RASHTALY

RY MANAGEMENT IN THE JVIM

ABOUT ME.

Gerrit Grunwald | Developer Advocate | Azul

W @hansolo.eu aZUI

MEMURY
MANAGEMENT

IN THE JVM...

=
NAUTUOMATIC
RIGHT...?

M=MURS MANAG=M=NT
Why you should care...

B Impact on application performance

azul

M=MURS MANAG=M=NT
Why you should care...

B Impact on application performance

B Impact on application responsiveness

azul

M=MURS MANAG=M=NT
Why you should care...

B Impact on application performance
B Impact on application responsiveness

@ Impact on system requirements

azul

M=MURIJ MANAG=M=NT

Stack, Heap and Metaspace

-1 1M A ™

THREAD
A
o STACK
T =
£ 0 R
4 s Primitives
< C
8 o) References
Local thread saf

azul

M=MURIJ MANAG=M=NT

Stack, Heap and Metaspace

Grows/Shrinks

Dynamically

>

<

-1 1M A ™

-T mr— AN

THREAD

STACK

Primitives

References

Local access -> thread satfe

HEAP

Objects

Shared access -> Not thread sate

Needs Garbage Collection

azul

M=MURIJ MANAG=M=NT

Stack, Heap and Metaspace

Grows/Shrinks

Dynamically

>

<

-1 1M A ™

-T mr— AN

THREAD

STACK

Primitives

References

Local access -> thread satfe

HEAP

Objects

Shared access -> Not thread sate

Needs Garbage Collection

METASPACE Wl

Class Metadata

Constant Pool
Method bytecode

No fixed size
grows dynamically

Contains info needed tor
JVM to work with classes

azul

M=MUORY MANAG=M=NT
nthe JVM. .

public static void main(Stringl[] args) {

record Person(String name) {
public String toString() { return name(); }

}

new Person("Gerrit");
new Person("Sandra");
new Person("Lilli");
new Person("Anton");

Person
Person
Person
Person

List<Person> persons = Arrays.asList(pl, p2, p3, p4);

System.out.println(pl); // —> Gerrit

azul

M=MUORY MANAG=M=NT
nthe JVM. .

public static void main(String[] args) { Stack areg {Qrthread |

record Person(String name) { ,
public String toString() { return name(); } ~rame for main

¥
Person = new Person("Gerrit"); Person pl = ref
Person = new Person("Sandra");
Person = new Person("Lilli"); Person p2 = ref
Person = new Person("Anton"); SersE T 03 _ et
List<Person> persons = Arrays.asList(pl, p2, p3, p4); Person D4 = ref
System.out.println(pl); // —> Gerrit List<Person> persons = ref

azul

M=MUORY MANAG=M=NT
nthe JVM. .

public static void main(String[] args) { Stack area for thread] Heap ares
record Person(String name) { .
public String toString() { return name(); *} —rame {OI’ Maln —» |Person object pW «—

}

Person = new Person("Gerrit"); Person ol = ref .

Person p2 = new Person("Sandra"); — |Person object p2 | +—

Person = new Person("Lilli"): Person P2 = ref

Person = new Person("Anton"); S ——- 03 _ ref

List<Person> persons = Arrays.asList(pl, p2, p3, p4); Person D4 = ref > |Person ObJeCt pB ‘

System.out.println(pl); // —> Gerrit List<Person> persons = ref
+ |Person object p4| «—
ol Listobject | =]

azul

M=MUORY MANAG=M=NT
nthe JVM. .

public static void main(String[] args) { Stack area for thread] Heap ares

record Person(String name) { .

public String toString() { return name(); *} —rame {OI’ Maln Person Obj@(ﬁt pW D Em—
}
Person = new Person("Gerrit"); Person ol = ref .
Person p2 = new Person("Sandra"); Person object p2 | +—
Person = new Person("Lilli"): Person P2 = ref
Person = new Person("Anton"); S ——- 03 _ ref
List<Person> persons = Arrays.asList(pl, p2, p3, p4); Person P4 = ref Person ObJeCt pB ‘
System.out.println(pl); // —> Gerrit List<Person> persons = ref

Person object p4| +—
All 4 persons and the list List object | =]
are reachable

azul

M=MUORY MANAG=M=NT
nthe JVM. .

public static void main(String[] args) { Stack area for thread] Heap ares
record Person(String name) A .
public String toString() { return name(); *} —rame {OI’ Maln Person Obj@(ﬁt pW D Em—
¥
Person = new Person("Gerrit"); Person ol = null '
Person = new Person("Sandra"); — |Person object p2 | +—
Person = new Person("Lilli"); Person P2 = ref
Person = new Person("Anton"); PeTson 03 ~ ref
List<Person> persons = Arrays.asList(pl, p2, p3, p4); Person D4 = ref > |Person ObJeCt pB ‘
System.out.println(pl); // —> Gerrit L1st<Person> persons = ref
o1 = null; + |Person object p4| «—
[Lstobject | =]

Setting p1 = null

azul

M=MUORY MANAG=M=NT
nthe JVM. .

public static void main(String[] args) { Stack area for thread] Heap ares
record Person(String name) { .
public String toString() { return name(); } Frame for main Person Obj@(ﬁt ol
}
Person = new Person("Gerrit"); Person ol - null '
Person p2 = new Person("Sandra"); — |Person object p2 | +—
Person = new Person("Lilli"): Person P2 = ref
Person = new Person("Anton"); S ——- 03 _ ref
List<Person> persons = Arrays.asList(pl, p2, p3, p4); Person D4 = ref > |Person ObJeCt pB ‘
System.out.println(pl); // —> Gerrit List<Person> persons = ref
o1 = nulls + |Person object p4| «—
System.out.println(persons.get(0)); // —> Gerrit
Person 1 is still reachable List object | =

via the persons list

azul

M=MUORY MANAG=M=NT
nthe JVM. .

public static void main(String[] args) { Stack area for thread] Heap ares

record Person(String name) A .

public String toString() { return name(); *} —rame {OI’ Maln Person Obj@(ﬁt pW D Em—
}
Person = new Person("Gerrit"); Person ol = null '
Person p2 = new Person("Sandra"); — |Person object p2 | +—
Person = new Person("Lilli"): Person P2 = ref
Person = new Person("Anton"); PeTson 03 ~ ref
List<Person> persons = Arrays.asList(pl, p2, p3, p4); Person D4 = ref > |Person ObJeCt pB ‘
System.out.println(pl); // —> Gerrit List<Person> persons = null
o1 = null; + |Person object p4| «—
System.out.println(persons.get(0)); // —> Gerrit
persons = null;

List object | =]

Setting persons = null

azul

M=MUORY MANAG=M=NT
nthe JVM. .

public static void main(String[] args) { Stack area for thread] Heap ares
record Person(String name) A .
public String toString() { return name(); *} —rame {OI’ Maln Person Obj@(ﬁt pW D Em—
}
Person = new Person("Gerrit"); Person ol = null '
Person p2 = new Person("Sandra"); Person object p2 | +—
Person = new Person("Lilli"): Person P2 = ref
Person = new Person("Anton"); PeTson 03 ~ ref
List<Person> persons = Arrays.asList(pl, p2, p3, p4); Person D4 = ref Person ObJeCt pB ‘
System.out.println(pl); // —> Gerrit List<Person> persons = null
o1 = null; Person object p4| +—
System.out.println(persons.get(0)); // —> Gerrit
persons = null;
Only p2, 03 and p4 are List object | =]
reachable

azul

M=MUORY MANAG=M=NT
nthe JVM. .

public static void main(String[] args) { Stack area for thread] Heap ares
record Person(String name) { .
, public String toString() { return name(); } Frame for main PerSOYWCﬂDﬁECTKDW
Person = new Person("Gerrit"); Person ol = null .
Person p2 = new Person("Sandra"); — |Person object pZ
Person = new Person("Lilli"): Person P2 = ref
Person = new Person("Anton"); S ——- 03 _ ref
List<Person> persons = Arrays.asList(pl, p2, p3, p4); Person D4 = ref ' PerSC”WCDbﬁECtFDB
System.out.println(pl); // —> Gerrit List<Person> persons = null
o1 = nulls + |Person object p4
System.out.println(persons.get(0)); // —> Gerrit
persons = null;

o1 and persons are List object
garbage

azul

HOW TOGET
RIDUOFIT...?

OARBAGE
CUOLLECTION

GARBAG=COLL=CTION
VWhat is it

B Form of automatic memory management

azul

GARBAG=COLL=CTION
VWhat is it

B Form of automatic memory management

B Identifies and reclaims no longer used memory

azul

GARBAG=COLL=CTION
VWhat is it

B Form of automatic memory management

B Identifies and reclaims no longer used memory

B Ensures efficient memory utilisation

azul

GARBAG=COLL=CTION
VWhat is it

B Form of automatic memory management

B Identifies and reclaims no longer used memory

B Ensures efficient memory utilisation

B Frees user from managing the memory manually

azul

= TOPPING THE
VWV RLL

STOPPING THE WeRLD

Halt of all application threads

Sate Point JVM

Application CC Threads Application

Threads Threads

azul

LUNSERVAIIVE
ANL
PRECISE

GARBAG=COLL=CTION

Conservative ana Precise

B Conservative does not fully identity all object reterences

(assumes any bit pattern in memory could be a reference, lead to more talse positives)

azul

GARBAG=COLL=CTION

Conservative ana Precise

B Conservative does not fully identify all object references

(assumes any bit pattern in memory could be a reference, lead to more talse positives)

B Precise correctly identifies all references in an object

(needed in order to move objects)

azul

PHASES

(precise collectors)

azul

TRACING

dentity live objects in the heap

azul

TRACING

Crinciple

B [raverse graph starting from roots

(only live objects)

azul

TRACING

Crinciple

B lraverse graph starting from roots

(only live objects)

B Mark all reachable objects

azul

FREEING

Reclaim resources held by dead objects

azul

FR==ING

rinciple

B lraverse whole heap space

(not only live objects)

azul

FR==ING

Crinciple

B lraverse whole heap space

(not only live objects)

B Clear unmarked objects

azul

FR==ING

Crinciple

B lraverse whole heap space

(not only live objects)

B Clear unmarked objects

B Remove marked bits from marked objects

azul

CUOMPACTION

Periodically relocate live objects

azul

PHAS=S

Two ways of compaction
@ Moving

Move all live objects to the beginning of the same area (e.g. heap)

azul

PHAS=S

Two ways of compaction
@ Moving

Move all live objects to the beginning of the same area (e.g. heap)

B Copying

Move all live objects to another area, the former area only contains garbage and can be freed

azul

PHAS=S

Remapping in moving collectors

HEEEN
. Free Cell
[]

Referenced Cell

azul

PHAS=S

Remapping in moving collectors

HEEEN
. Free Cell
[]

Referenced Cell

azul

PHAS=S

Remapping in moving collectors

HEEEN
. Free Cell
[]

Referenced Cell

azul

CULLECTURS

NUON MUVING
CUOLLECTUR

Mark & Sweep

NON MOVING COLLECTOR

Jemao

1. Mutator allocates cells in Heap
2. Heap is out of memory -> GC
3. Mark all live cells

4 Free all dead cells

5. Unmark all live cells

6. Resume Mutator

Heap

Free Cell

Referenced Cell

Dereferenced Cell

Marked Cell

Referenced Cell (survived 1 GC)

A

-ragmentation

azul

MUOVING
CULLECTURS

Compacting Collector & Copy Collector

CLUMPALCTING
CUOLLECTUR

Mark & Compact

COMPACTING COLLECTOR

Jemao

1. Mutator allocates cells in Heap
2. Heap is out of memory -> GC
3. Mark all live cells

4 Free all dead cells

5. Unmark all live cells

6. Compact all live cells

/. Resume Mutator

Heap

Free Cell

Referenced Cell

Dereferenced Cell

Marked Cell

Referenced Cell (survived 1 GC)

A

Headroom
20-50%

azul

CUPY
CULLECTUR

Mark & Copy

COPY COLLECTOR

@)
)
HO)
2 L =
< O <
_ > =
- 2
02
o ° _ O — D
o U @ O Vdm
O o (O
v g 5 £ 2 & g Qg L
> 3 © & g5 o § c L U
L.em
O
i aiE e o0

FHEHREEEERERHRE.
FEHEREEEEEHE
“HHEFREE
10 1 O O
0
“FHEFRFEFEFEEFHFE
I I O

1 H H H H H H H B B HH
i H H HH HHH H HHH

1 H H H H H H H H HH H
1 H H H K HH H H i H H
i H H HH H H H H H HH IS

1 H H HHHHHHH HH |
i HHHHHHHERHIHE]

O © Q. = =

O il =

4

2)
g . -
Q < D

— o\ o <t O O ~

azul

GENERATIONAL
CUOLLECTUR

(Generat ional Mark & Compact

GENERATIONAL COLLECTOR

\/\/@ak G@ﬂ@f@t\@ﬂa‘ HypOth@S\S (Most objects die young)

short : medium

NUMBER OF OBJECTS

LIFETIME OF OBJECTS azul

GENERATIONAL COLLECTOR

\/\/@ak G@ﬁ@f@t\@ﬂa‘ Hprﬂh@S\S (Most objects die young)

Full collection

<

Major collection

«—— Minor collection

Tenured

Survivor

Space

Spaces

0 JH JH JH JH JH JHJHJE JH JH T JH JH JH T A
SN << T 0
SN < 0 = N
SN < 0 = A
<IN << O 0 =
0 JH JHJHJH JH O JH T T T JH JH JH JH JH O JH JH T JH JH JH
SN << 0 1
SN << O 0 =
SN < 0 =
S 0 =
SIS 0 10
SN 0 =
SN < T < =
S 0 £
SN << 0 =
SIS < 0 =1
SN << T 0 = 0 |
SN << O = =W 2
S << O = = 4T
SN 0 = 1
SN 0 = 61
SIS << O = = 21
SN < 0 = 41
SIS << O O O = =W 4T
SN < < = T
SN 0 = T
SN < 0 = ¢
218 JE JH VA VA JH A JA A JH 13 JH JH JH JA JR JA J4 JH 13 JH |
SIS << 0 = ¢ I
SIS << O 0 =

SISO EDN GGG i iR
- JE B OJH B OH B JH JH O E
SO TA e e e
SISO IO G CE NGOG G e
R R E RN
SIS IO E GG
SISO IO OGN CE DD AN G e
SN OISO D EEN R e
NS CICCCCECEee e
SISO IO G CE NG CGCCe

S B VB JH JEJE VB JH 4 JE Jd T4 Jd JH I8 13 [[H I8 JeAT [| |
I = O O 0 I

S>10dMd0O 40 d39INMNN

)

— O
@8] — '
e O O O
O O 5 Ry gt
{.ﬁu) @.ﬁ
3y O © Lo O O
mgd O < n O
c O = -
U = 5 N — O .=
O T o S £ L .=
= S 5 =ie)
O e o
n Y ng [

Old Generation

LIFETIME OF OBJECTS

azul

+«—— Young Generation

GENERATIONAL COLLECTOR

- G :
AN - - 1 4 4 4 HH 4 H |

N QO D
RRRRR

BT T T T 7 0 7 HH

=00 = == = == = < 6 <= < B
= 0= == == == A =1 = = : B

=00 = == = == = < 0 <= < B
=00 = == == = = < = B

20 0 O O O
~F FEEFERFEFFELERE
I
G O

 EEEEEEE RN R
M T T 7 7 T HH {H IR

- O
D W, -
mEu Y D QO Q
A W), O W)
n [a E a
@ 2 o c 2
O, - - O O O O
O 5 O = = +— O A
5 ¢ - =g 2 22 3 &
_ - |n
LdLG o O O O ® QD Q) =
CCCCCC = = @
O O 1+ o L O L O (© =
= 2 6 == = =< o >
o — — O — L O © O
5 S} X% o) e & >
I_L
5 2 0 o0& O o B
M @) — N
1] = NS 0w 0 5 s 0
— QV e0 <t L L0 = O LL M~ CO

1 H B 4 H JE

azul

REMEMBEREL
oE=T

ntergenerational References

azul

REMEMBERELD SET

OW

tO do a minor co
with reterences rrom old t
yOuNg genera

cC

on. Y

ton

azul

REMEMBERELD SET

Also known as Card Table "

Reterenced Cell

ROOts

Dereterenced Cell

Marked Cell

«— Young Gen —> < Old Generation

azul

REMEMBERELD SET

Also known as Card Table "

Reterenced Cell

ROOts

Dereterenced Cell

Marked Cell

«— Young Gen —> < Old Generation

~— Minor GC —

azul

REMEMBERELD SET

Also known as Card Table "

Reterenced Cell

ROOts

Dereterenced Cell

Marked Cell

«— Young Gen —> < Old Generation

~— Minor GC —

azul

REMEMBERELD SET

Also known as Card Table "

Reterenced Cell

ROOts

Dereterenced Cell

Marked Cell

«— Young Gen —> < Old Generation

~— Minor GC

azul

REMEMBERELD SET

Also known as Card Table "

Reterenced Cell

ROOts

Dereterenced Cell

Marked Cell

«— Young Gen —> < Old Generation

~— Minor GC

azul

REMEMBERELD SET

Also known as Card Table "

Reterenced Cell

ROOts

Dereterenced Cell

Marked Cell

«— Young Gen —> < Old Generation

~— Minor GC

azul

REMEMBERELD SET

Also known as Card Table "

Reterenced Cell

ROOts

Dereterenced Cell

Marked Cell

«— Young Gen —> < Old Generation

~— Minor GC

0101 O
Marked in Card Table

azul

REMEMBERELD SET

Also known as Card Tapble

ROOts

~— Minor GC

«— Young Gen —»

GC

Old Generation > ﬁ MO

0 F1

0

Marked in Card Table

EEER
. Free Cell
ERER

Reterenced Cell

Dereterenced Cell

Marked Cell

ooks up Card Table,
s the reference ano
marks it as live

azul

LUNCURRENT
COLLECTION #

LUNCURRENCS
=
HARL...

LUNCURRENT
MARKING

CONCURRENCS IS HARL...

Concurrent Marking

@

o G/G O—C

O—C

azul

CONCURRENCS IS HARL...

Concurrent Marking

(U
I ‘/Q 2 2

Collector starts marking objects

azul

CONCURRENCS IS HARL...

Concurrent Marking

@

o O/O O—C

O—C

azul

CONCURRENCS IS HARL...

Concurrent Marking

O—O—0 O
e —
% o

Thread

Mutator removes reference and creates a new one from an already visited cell |

azul

CONCURRENCS IS HARL...

Concurrent Marking

O—O—0 O
oo —
ol Ao —e

Thread

Mutator removes reference and creates a new one from an already visited cell |

azul

CONCURRENCS IS HARL...

Concurrent Marking

O—0O0—0
< IO @ 0
o O—C

AN

Won't be detected by the Garbage Collector !

azul

CONCURRENCS IS HARL...

Concurrent Marking

o @
< 1o & 0@
o o ©

A
\

Won't be detected by the Garbage Collector !

azul

SBARRIERS TU
THE RESCUE

BARRIERS
Reaa / Write Barriers

B Mechanisms to execute memory management code when a
read/write on some object takes place

azul

BARRIERS
Reaa / Write Barriers

B Mechanisms to execute memory management code when a
read/write on some object takes place

B Used to keep track of inter-generational reterences

(references from old generation to young generation, the so called Rembered Set)

azul

BARRIERS
Reaa / Write Barriers

B Mechanisms to execute memory management code when a
read/write on some object takes place

B Used to keep track of inter-generational reterences

(references from old generation to young generation, the so called Rembered Set)

B Used to synchronize action between mutator and collector

(allocation concurrent to collection)

azul

BARRIERS
Reaa / Write Barriers

B Mechanisms to execute memory management code when a
read/write on some object takes place

B Used to keep track of inter-generational reterences

(references from old generation to young generation, the so called Rembered Set)

B Used to synchronize action between mutator and collector

(allocation concurrent to collection)

B Read Barriers are usually more expensive

(reads /5% to writes 25% -> Read Barriers must be very efficient)

azul

CONCURRENCS IS HARL...

Concurrent Marking using Write Barriers

@

o G/G O—C

O—C

azul

CONCURRENCS IS HARL...

Concurrent Marking using Write Barriers

9 (U
I ‘/Q 2 2

Collector starts marking objects

azul

CONCURRENCS IS HARL...

Concurrent Marking using Write Barriers

@

o O/O O—C

O—C

azul

CONCURRENCS IS HARL...

Concurrent Marking using Write Barriers

O—0O—0O O
o l—@—@— —(
% o

Thread

Nutator nits write barrier and removes reference and adds a new one

azul

CONCURRENCS IS HARL...

Concurrent Marking using Write Barriers

O—0O—0O O
o l—@—@— —(
ol =e

Thread

Nutator nits write barrier and removes reference and adds a new one

azul

CONCURRENCS IS HARL...

Concurrent Marking using Write Barriers

O—0O—0O O
o l—@—@— —(

e
\

Removed references will be marked as reachable by Write Barrier

azul

CONCURRENCS IS HARL...

Concurrent Marking using Write Barriers

O—0O0—0

@ -0
O O—C

WE

azul

CONCURRENCS IS HARL...

Concurrent Marking using Write Barriers

O—0O0—0

< e @ o0
= O—C

WE

azul

CONCURRENCS IS HARL...

Concurrent Marking using Write Barriers

O—0O—0 @~
WB

WEB |

e e 0 e
WB

® (o

WE

azul

CONCURRENCS IS HARL...

Concurrent Marking using Write Barriers

o @~
WE WB |
ROOT . —‘ »‘ $ »‘WB

v \ 4
@ - B

WE WB

azul

CONCURRENCS IS HARL...

Concurrent Marking using Write Barriers

o @~
WE WB |
ROOT . —‘ »‘ $ »‘WB

v \ 4
@ o O

WE WB

azul

CONCURRENCS IS HARL...

Concurrent Marking using Write Barriers

o @~
WE WB |
ROOT . —‘ »‘ $ »‘WB

v \ 4
@ o O

WE WB

In the Re-Marking phase, in between marked references will be marked as live

azul

CONCURRENCS IS HARL...

Concurrent Marking using Write Barriers

o @~
WE WB |
ROOT . —‘ »‘ g »‘WB

v v
@ o O

WE WB

In the Re-Marking phase, in between marked references will be marked as live

azul

LUNCURRENT
CUPSING

CUONCURRENCS IS HARL...
>top the world copying

1 g e
References ;
v v

HEADERS

~-ROM Space 10O Space

azul

CUONCURRENCS IS HARL...
>top the world copying

1 g e
References ;
v v

HEADERS STO@ Th@ Wor\d
(the Mutator)
X =
/=3
~-ROM Space 10O Space

azul

CUONCURRENCS IS HARL...
>top the world copying

= »

References

v v

HEADERS

~-ROM Space

HEADERS

10O Space

Copy the Object

(Create forwarding pointer)

azul

CUONCURRENCS IS HARL...
>top the world copying

References

\

FORWARDING HEADERS Update all reterences
(Save the pointer that fowards the copy)
X = X =
y =2 y =2

-ROM 5Space 10O Space
azul

CONCURRENCS IS HARL...

>top the world copying

References

N

v v

FORWARDING

~-ROM Space

HEADERS

10O Space

Update all references

(Walk the heap and replace all references
with forwarding pointer to new location)

azul

CUONCURRENCS IS HARL...
>top the world copying

.

References

FORWARDING

~-ROM Space

HEADERS

10O Space

Update all references

(Walk the heap and replace all references
with forwarding pointer to new location)

azul

CUONCURRENCS IS HARL...
>top the world copying

S

HEADERS

Remove old objects anad
continue running the Mutator

~-ROM Space 10O Space
azul

CONCURRENCS IS HARL...

Concurrent copying

1 g e
References ;
v v

HEADERS

~-ROM Space 10O Space
azul

CONCURRENCS IS HARL...

Concurrent copying

-
12

HEADERS | ceceecciiencns > HEADERS

While copying

the Object...
I | e e e e e e e e 0 e e 0 > l
y=2 | e eeeeeciecee e > y =7
/=3 | e eeeeeseceece e > /=3
-ROM 5Space 10O Space

azul

CONCURRENCS IS HARL...

Concurrent copying

-
12

{XDRNARDWME HEADERS

While copying

the Object...
X =1 X =]
y =2 é y =2
Zic é 75
~-ROM Space 10O Space

azul

CONCURRENCS IS HARL...

Concurrent copying

VRN

References

\

FQRWARD\NG

X =

y =2

/=3

~-ROM Space

HEADERS

10O Space

..when updating the

references. ..

azul

CONCURRENCS IS HARL...

Concurrent copying

VRN

References

\

FQRWARD\NG

X =

y =2

/=3

~-ROM Space

HEADERS

10O Space

reachable !

..both Objects are

azul

CONCURRENCS IS HARL...

Concurrent copying

References /.
v

FQRWARD\NG EADERS ..both Objects are
reachable |
_ . And can be accesseo
5 in parallel by different
y =2 y =2 Threads.
L=3 /=3
-ROM 5Space 10O Space

azul

CONCURRENCS IS HARL...

Concurrent copying

-
Thread

A

.

~

J

References

\

e

FQRWARD\NG

X =

~-ROM Space

-
Thread

B

HEADERS

x=4

rd

10O Space

.

~

J

Threads can write to

both Objects |

azul

CONCURRENCS IS HARL...

Concurrent copying

-

.

Thread

A

~

J

References

\

e

FQRWARD\NG

X =

~-ROM Space

e)
Thread
B
_ J

HEADERS

x=4

rd

10O Space

Threads can write to

both Objects |

Which copy is correct 7

azul

CONCURRENCS IS HARL...

Concurrent copying

=
. ’//'/'

FQRWARD\NG Solution could pe
installing a

HEADERS Brooks Pointer. .

-ROM 5Space 10O Space
azul

CONCURRENCS IS HARL...

Concurrent copying

SR /*./.
¥ v
CFORWARDING | | |
..which points to object
HEADERS header iTS@h[

-ROM 5Space 10O Space
azul

CONCURRENCS IS HARL...

Concurrent copying

-
R

FQRWARD\NG

~FORWARDING
HEADERS

~-ROM Space

HEADERS

Copy the Object

azul

CONCURRENCS IS HARL...

Concurrent copying

References

\
CORWARDING FORWARDING Install forwarding pointer
to itself
HEADERS HEADERS
X =1 X =1
y =2 Y=
7 =3 7 =3
-ROM 5Space 10O Space

azul

CONCURRENCS IS HARL...

Concurrent copying

References

\
FORWARDING FORWARDING
Nobody knows about copy
HEADERS HEADERS
X =1 X =1
y =2 y =7
Z =3 7 =3
-ROM 5Space 10O Space

azul

CONCURRENCS IS HARL...

Concurrent copying

References

CORWARDING ATQmicaHy update {Qrvvardmg
pointer of original object
HEADERS Lo new copy

X =1 X =1

y =2 y =7

Z=3 Z=3
-ROM 5Space 10O Space

azul

CONCURRENCS IS HARL...

Concurrent copying

-

.

Thread

~

A
.

References

~ORWARDING
HEADERS

y =2 [y =9
7 =3 Z=3
~-ROM Space 10O Space

-

~

Thread

.

B

J

Threads now will always
find the right object

azul

CONCURRENCS IS HARL...

Concurrent copying

.

References \
FORWARDING FORWARDING When all references
are updated...
HEADERS HEADERS
x = X =4
y =2 y=295
7 =3 7 =3
-ROM 5Space 10O Space

azul

CONCURRENCS IS HARL...

Concurrent copying

FORWARDING |
Remove the old object
HEADERS

~-ROM Space 10O Space
azul

CUOLLECTURS
IN THE JVM

S=RINL

SRR
l‘a g
Q¥ 5

S=RINAL

AVAILABILITY ALL JDK'S

CHOOSE WHEN

B Single core systems with small heap (<4GB)
PARALLEL NO BN

O pause time requirements

CONCURRENT N@

GENERATIONAL YES

BEST SUITED FOR
HEAP SIZE SMALL - MEDIUM @ Single threaded applications

S AUSE TIMES ONGER B Development environments

THROUGHPUT LOW

B Microservices on small nodes
ml

0s SUPPORT IO —
SMVESUIRIGL I > java -XX:+UseSerialGC

s

LATENCY HGHER

CPU OVERHEAD LOW (1-5%)

azul

S=RINAL
NOTES

B Automatically selectea it only a single processor is available

B Automatically selected it the avail. memory less than 1/92 MB

Young Generation Old Generation
Application Application Application Application
Threads Threads Threads Threads
ﬁ ﬁ
GC Threao GC Threao

PARALL=L

PARALL=L

CHOOSE WHEN

AVAILABILITY ALL JDK'S

B Multi-core systems with small heap (<4GB)
PARALLEL YES o

Peak performance is needed without pause time

CONCURRENT Ne requirements

GENERATIONAL YES

BEST SUITED FOR
HEAP SIZE MEDIUM - LARGE B Batch processing

PAUSE TIMES VIODERATE @ Scientific computing
B Data analysis
1

0s suPPORT O
SMVESNIRIG LI > java -XX:+UseParallelOldGC

THROUGHPUT I GH

s

LATENCY LOWER

CPU OVERHEAD VI GIBIS7ANESRSEuR0N)

azul

PARALL=L
NOTES

Default garbage collector from J

Young Generation

Application Application
Threads Threads

o —_— S —_—

ﬁ #
q
ﬁ #

GC Threads

K O to U

DK 3

Old Generation

Application Application
Threads Threads
ﬁ ﬁ
ﬁ ﬁ
#

ﬁ ﬁ
ﬁ ﬁ
GC Thread

Concurrent Mark and Sweep

azul

0
K4
N

AVAILABILITY JDK 1.4-13 CHOOSE WHEN

B Response time is more important than througnhput
PARALLEL YES &

Pause time must be kept shorter than 1 sec

CONCURRENT PARTIALLY

GENERATIONAL YES

BEST SUITED FOR
HEAP SIZE MEDIUM - LARGE B Web applications

SAUSE TIMES MODERATE B Mediums sized enterprise systems

THROUGHPUT MODERATE

s

0s SUPPORT IO —
SMVEUNIGL I > java -XX:+UseConcMarkSweepGC

LATENCY MODERATE

CPU OVERHEAD VI GIBIS7ANESN SRRV

azul

CMS
NOTES
B Deprecated as of JOK @

] DK 14

B Concurrent marking

Removed from J

Application
Threads
ﬁ
ﬁ
ﬁ
ﬁ
ﬁ
STW
Initial
Marking

Application
+ Concurrent
Marking

pr—
p——
p——
—_—

S ——

STW
Remarking

Application
+ Concurrent
Sweeping

e
p——
e
—_—

azul

Garbage First

azul

51
—eap-Layout

Regionsize 1-32 MB

Max no. of region <= 2048

Heap Region
< 4GB - 1 MB
< 8 GB - 2 MB
< 16 GB - 4 MB
< 32 GB - 8 MB
< 64 GB - 16 MB
> 64 GB - 32 MB

Example 8GB Heap:
8 GB Heap = 8192 MB
8192 MB /2048 = 4 MB region size

Unassigned region

a

yA

ul

-
D -
3 :
O) O G
o O
DTS)
® O
V|
v v v v
C
[
0 0
g n n %
- _ 9 9 = 2
(@) N
w o @ D 2 @
‘= Nl el O ¢
- (@)) C ®)) O
@) Q o O c o
. —_— Nl e ()
& c = 5 =
© O > = €
D) LL] W — T A
HEEE |
HEEEE
HEEEN
[[[[[]]
HEN []]
[[]
[[T]
[[[[[[|
HEEEEEEN HEEEEEEEN
HEEEEEEN
| [T [T T
[[T T T[]
HEEEEEEN
| [T [T T
[[T T T[] =
[[[[[[[][] EEEEEEER
m..
HE
HE
]
HE
HE
HEE
HEN

D .
N
O :
C
= =
O
(O $:
N

N
_ Qg c ..WM
= V OMmMMMOMMM o "

_ -= = = = = = S O

= o0 o o. |
p ™ 0 O 4 N < 00 © N T -
D)y — ™M O <
L D 2
a) = I D 9, QN
N = 0 O ~
5 © M M MmmmMmMm o © m
6 c O GCRGEGCEGRCEG! - L =

@) -
Rt Q < 00 O N ¥ < E M o
gwm © — Mm O O c (H O
Q 9 Y —
xr = T VvV VV V V A W o

azul

51
—eap-Layout

Region size 1 - 32 MB

Max no. of region <= 2048

Heap Region
< 4GB - 1 MB
< 8 GB - 2 MB
< 16 GB - 4 MB
< 32 GB - 8 MB
< 64 GB - 16 MB
> 64 GB - 32 MB

Example 8GB Heap:
8 GB Heap = 8192 MB
8192 MB /2048 = 4 MB region size

Unassigned region

Heap

Eden region g
Young Gen
5-60%
Survivor region -
Tenured region -«
Old Gen

Humongous region
(> 0.5 * Region size)

Example:
6 Eden Regions
3 Survivor Regions

2 Regions with most garbage will
be collected/promoted

azul

AVAILABILITY JDK 7U4+ CHOOSE WHEN

B Response time is more important than througnhput
PARALLEL YES &

Pause time should be around 200 ms

CONCURRENT PARTIALLY B Heap size is not larger than 16-32 GB

GENERATIONAL YES

BEST SUITED FOR
HEAP SIZE MEDIUM - LARGE B Mixed workloads

oAUSE TIMES TSRSV ISenY B Large sized enterprise systems
B Responsive in medium to large heaps
ul

0s SUPPORT IO —
SMVESNUIRIGL I > java —-XX:+UseG1GC

THROUGHPUT I GH

s

LATENCY LOWER

=

CPU OVERHEAD VI GIBIS7ANESN SRRV

azul

51
NOTES

B Default collector from JDK 9 onwards

B Concurrent marking

Application Application Application
Threads + Conc. Root + Conc. Mark
Scanning
ﬁ ﬁ
ﬁ ﬁﬁ
ﬁ ﬁﬁ
STW STW Partly STW
Young Gen. + Remarking STW Copy
Initial Marking Cleanup

azul

=FSILUN

=PFPSILON

AVAILABILITY JOK 1T+

CHOOSE WHEN

B lesting performance or memory pressure

PARALLEL

B Highest performance is needed and nearly no

CONCURRENT _ garbage is created

GENERATIONAL

BEST SUITED FOR
HEAP SIZE - @ Cxtremely short lived jobs

S AUSE TIMES | B Last drop latency improvements

THROUGHPUT

B Last drop throughput improvements
ul

0s supPORT N
NAAYBYUURIGIS I > java -XX:+UnlockExperimentalVMOptions -XX:+UseEpsilonGC

azul

s

LATENCY

CPU OVERHEAD VERY LOW

SH=NANDOAH

SH=NANDIOAH 5

CHOOSE WHEN

AVAILABILITY JDK 11.0.9+

B Response time is a high priority
PARALLEL YES o

Using a very large neap (100GB+)

CONCURRENT SULLY B Predictable response times needed

GENERATIONAL NO

BEST SUITED FOR

HEAP SIZE MEDIUM - LARGE B Latency sensitive applications

PAUSE TIMES SHORT @ Large scale systems
B Highly concurrent applications
ul

0s SUPPORT IO —
SV EUIIGL I > java -XX:+UseShenandoahGC

THROUGHPUT VERY HIGH

s

LATENCY VERY LOW

CPU OVERHEAD NIGIDISVAVESRNNORAONY

azul

SH=N/ANDOAH ta
NOTES
B Not available in Oracle JDK

B A it reducead throughput due to concurrent GC

B Makes use of new barrier concept, load reference barrier

azul

/ Garbage Collector

azul

ZE0

—eap-Layout

HEAP

EMPTY REGION

Y

YOUNG GEN REGION

OLD GEN REGION

azul

N
n
()

AVAILABILITY JDK 15/ 21+ CHOOSE WHEN

B Response time is a high priority
PARALLEL YES o

Using a very large neap (100GB+)

CONCURRENT SULLY B Predictable response times needed

GENERATIONAL NO /YES

BEST SUITED FOR

HEAP SIZE LARGE @ Low latency sensitive applications

PAUSE TIMES SHORT @ Large scale systems
B Highly concurrent applications
ul

0s suPPORT O
SIVVVBAWIRIG I > java -XX:+UseZGC -XX:+ZGenerational®

*Not needed in the future, because generational ZGC will become the default

azul

THROUGHPUT VERY HIGH

s

LATENCY VERY LOW

CPU OVERHEAD NIGIDISVAVESRNNORAONY

ZE0
NOTES

B Non-generational version will be deprecatec

azul

Concurrent Continues Compacting Collector

azul

CL

NOTES

B Part of Azul Zing JVM

(Test + Jump which only takes 1 cpu cycle -> very fast)

B LVB isread and write barrier

(guaranteed to be hit on every access)

B Best

(Normal

oerformance by using lransparent Huge

page size 4kB, THP size 2ZMB)

B Makes use of Loaded Value Barrier (LVB) everywhere

“ages

azul

MARKING
PHASE

L
Marking Phase

VB VB
ge O O
Threads ROot
VB VB VB
VB VB

. O O
Oo—l—C

azul

L
Marking Phase

VB

GC
Threads ROot

o—l

Oz O O
s s s

VB

Oo—l—C

azul

L
Marking Phase

VB

GC
Threads ROot

o—l

v v
J J J

VB

Oo—l—C

azul

L
Marking Phase

VB

GC
Threads ROot

o—l

VB

Oo—l—C

azul

L
Marking Phase

GC
Threads ROot

o—l

Oo—l—C

ADP.
Thread

azul

L
Marking Phase

GC
Threads ROot

o—l

O—B—) | Trigger LVB

ADP.
Thread

azul

L
Marking Phase

GC
Threads ROot

o—l

c . ’Q | lest+Jump

ADP.
Thread

azul

L
Marking Phase

GC
Threads ROot

o—l

Q . ’Q | Mark

ADP.
Thread

azul

__
"ac
Q¥ " _

L
Marking

GC
Threads

o

ROOT

.
L) .
oy ..

o

Hand over

to GC

ADP.
Thread

azul

S
"a c_
Q¥ *_

L
Marking

GC
Threads

o

ROOT

o

No need to mark

again by GC |

ADP.
Thread

azul

LUICK
RELEASE

CL

Relocation

Region

Phase

Memory

N :

s T Ty ————— Physical

Virtual

azul

I
." o_
Q¥ *_

CL

Relocation Phase compacion)

Memory
T S —— Physical
[Move the object
I E]
-] Physical

Off-Heap Page

Store mapping in off-heap page
(no forwarding pointer) azul

I
." o_
Q¥ *_

CL

Relocation Phase compacion)

Memory
s T T——— Physical
| No mapping information in the object header -> direct release of physical memory
IE]
Physical

Off-Heap Page

A->A B=>B

azul

I
." o_
Q¥ *_

CL

Relocation Phase compacion)

Memory
s T T——— Physical
No mapping information in the object header -> direct release of physical memory
IE]
Physical

Off-Heap Page

A->A B=>B

azul

I
.‘3 o_
Q¥ *_

CL

Relocation Phase compacion)

Memory

e ————

e ——— Physical

Virtual

Physical

Off-Heap Page

A->A"B->B C->C

azul

I
‘.’ o_
Q¥ *_

CL

Relocation Phase compacion)

A B C

Memory

e ————

Physical

ﬂ Jitua
-]

-] Physical

Off-Heap Page

A->A"B->B C->C D-=>D

azul

I
“3 o_
Q¥ *_

CL

Relocation Phase compacion)

A B C

Memory

-]

Physical

II!!II\
-]

Physical

Off-Heap Page

A->A"B->B' C->C D->D" E~->F

azul

I
“3 o_
Q¥ *_

CL

A\D@ ‘ OC@JUQ [Dh aASE (Quick Release)

Memory
] Physical

App thread tries to access old location following the old reference and hits the LVEB

VB
e ———

Physical

ADD. Off-Heap Page

Q Hhread ASA BSB CoC DoD' ESE

azul

CL

Relocation

I
“3 o_
Q¥ *_

- h dASE (Quick Release)

Memory

Virtual

n

A B C

ADP.

-] Physical

Gets new location from Off-Heap forwarding page

-]

Physical

Off-Heap Page

» A>A" BB C->C D->D E-F

n Thread

azul

I
“3 o_
Q¥ *_

CL

A\D@ ‘ OC@JUQ [Dh aASE (Quick Release)

n
A B C

Memory

Virtual

-] Physical
Updates the reference and can access object at new location

I \/irtua‘
e e Physica\
ADD. Off-Heap Page
Q Hhread ASA BSB CoC DoD' ESE

azul

__
"ac
Q¥ " _

CHOOSE WHEN

AVAILABILITY AVAS VAINIEIRIVAV

B Response time is a high priority
PARALLEL YES o

Using a very large neap (100GB+)

CONCURRENT SULLY B Predictable response times needed

GENERATIONAL YES

BEST SUITED FOR

HEAP SIZE LARGE @ Low latency sensitive applications

PAUSE TIMES SHORT @ Large scale systems
B Highly concurrent applications

0S SUPPORT)
wMswitcH N

THROUGHPUT VERY HIGH

LATENCY VERY LOW

RHARATE *
I

CPU OVERHEAD NIGIDISVAVESRNNORAONY

azul

L
NOTES
B Onlyavailable in Azul Zing JVM

B No performance overhead because of faster Falcon compiler

Mark Relocate Remap Mark Relocate Remap
APP THEA — | e— — —— | e— | e——
App Thread —— ——— —— e e
B . o RS o v —_ ——p | >
D S e o S——_ —
. w—
. o B —
= S —
—b >

Mark Relocate Remap a/'UI

VWHICH UONE...?

VWHICH ONE... 7

—ssential Criteria

B Throughput

Percentage of total time spent in application vs. memory allocation and garbage collection

azul

VWHICH ONE... 7

—ssential Criteria

B Throughput

Percentage of total time spent in application vs. memory allocation and garbage collection

@ Latency
APP

ication responsiveness, affected by gc pauses

azul

VWHICH ONE... 7

—ssential Criteria

B Throughput

Percentage of total time spent in application vs. memory allocation and garbage collection

@ Latency
APP

ication responsiveness, affected by gc pauses

@ Resource usage

The working set of a process, measured in pages and cache lines

azul

VWHICH ONE... 7

—ssential Criteria

Very Low
_atency

Very high Low resource
throughput «~—7T —7 "7 ——* usage

azul

VWHICH ONE... 7

Choose dependent on your workload

G1, CMS

Pause times

T ms 10 ms 100 ms 1 s 10 s

Runtime overhead

D ————————————————————
20% 15 % 10 % 5% 0%

* C4 has less overhead due to faster Falcon compiler aZUl

UVERVIEVV

UOVERVIEW

‘ Parallel GC

Serial GC

llllllll

Epsilon

‘ Shenandoah

ALL JDK's ALL JDK's JDK 1.4-13 JDK 7ud+ DK 11+ JDK 11.0.9+ JDK15/21+ Azul Prime
e —
NO VES VES =S T~ =S VES VES
// \\
— —
Ne Ne PARTIALLY PARTIALLY f:;><::f FULLY FULLY FULLY
= —=
YES YES YES YES TS~ Ne NOFAZES YES
Saum—
SMALL - MEDIUM | MEDIUM - LARGE | MEDIUM - LARGE | MEDIUM - LARGE < | ARGE VERY LARGE VERY LARGE
T~ VERY SHORT VERY SHORT VERY SHORT
LONGER MODERATE MODERATE SHORT - MEDIUM ~c—
_ ~_ (<10ms) (<Tms) (<Tms)
— —
LOW HIGH MODERATE HIGH T~ VERY HIGH VERY HIGH VERY HIGH
— —
HIGHER LOWER MODERATE LOWER TS VERY LOW VERY LOW VERY LOW
LOWER HIGHER MODERATE HIGHER VERY HIGH VERY HIGH VERY HIGH VERY HIGH
LOW LOWER MODERATE MODERATE VERY LOW LOW - MODERATE | MODERATE - HIGH | MODERATE - HIGH
T~ "
HIGH HIGH HIGH HIGH e MODERATE LOW LOW

azul

VWVANNA KNOW
MUORE ¢

VWANNA KNOW MOR= 7

R.Jones et al. "The Garbage Collection Handbook” Chapman & Hall/CRC, 2017

AS 4 .) =
THE g
GARBAGE COLLECTION

HANDBO@K” I -

2 :
The Art of Automatic l\ﬁmor;'wapag_ en
. Q« .‘I' P .-
» A\o‘ v

azul

THANK YOU

.
|0
ZGC C4a
99 99
LT T

azul

