
EXPLORING THE MEMORY MANAGEMENT IN THE JVM

G1EpsilonCMSParallel ZGCSerial Shenandoah C4Epsilon

Gerrit Grunwald | Developer Advocate | Azul

@hansolo.eu

ABOut me.

MemOry
MAnAgement

in the JVM...

is
autOmatic

right...?

SO...why
care...?

MEMORY MANAGEMENT
Why you should care...

Impact on application performance

MEMORY MANAGEMENT
Why you should care...

Impact on application performance

Impact on application responsiveness

MEMORY MANAGEMENT
Why you should care...

Impact on application performance

Impact on application responsiveness

Impact on system requirements

Stack, Heap and Metaspace

THREAD

STACK

MEMORY MANAGEMENT

THREAD

STACK

THREAD

STACK

Primitives

References

G
ro

w
s/

Sh
rin

ks

D
yn

am
ic

al
ly

Local access -> thread safe

Stack, Heap and Metaspace

THREAD

STACK

MEMORY MANAGEMENT

HEAP
THREAD

STACK

THREAD

STACK

Primitives

References

Objects

G
ro

w
s/

Sh
rin

ks

D
yn

am
ic

al
ly

Local access -> thread safe Shared access -> Not thread safe

Needs Garbage Collection

Stack, Heap and Metaspace

THREAD

STACK

MEMORY MANAGEMENT

HEAP METASPACE
THREAD

STACK

THREAD

STACK

Primitives

References

Objects Class Metadata

Constant Pool

Method bytecode

G
ro

w
s/

Sh
rin

ks

D
yn

am
ic

al
ly

N
o

 fi
xe

d
 s

iz
e,

g

ro
w

s
d

yn
am

ic
al

ly

Local access -> thread safe Shared access -> Not thread safe Contains info needed for
JVM to work with classes

Needs Garbage Collection

public static void main(String[] args) {

 record Person(String name) {
 @Override public String toString() { return name(); }
 }

 Person p1 = new Person("Gerrit");
 Person p2 = new Person("Sandra");
 Person p3 = new Person("Lilli");
 Person p4 = new Person("Anton");

 List<Person> persons = Arrays.asList(p1, p2, p3, p4);

 System.out.println(p1); // -> Gerrit

}

MEMORY MANAGEMENT
In the JVM...

public static void main(String[] args) {

 record Person(String name) {
 @Override public String toString() { return name(); }
 }

 Person p1 = new Person("Gerrit");
 Person p2 = new Person("Sandra");
 Person p3 = new Person("Lilli");
 Person p4 = new Person("Anton");

 List<Person> persons = Arrays.asList(p1, p2, p3, p4);

 System.out.println(p1); // -> Gerrit

}

MEMORY MANAGEMENT
In the JVM...

Stack area for thread 1

Frame for main

Person p1 = ref
Person p2 = ref
Person p3 = ref
Person p4 = ref
List<Person> persons = ref

public static void main(String[] args) {

 record Person(String name) {
 @Override public String toString() { return name(); }
 }

 Person p1 = new Person("Gerrit");
 Person p2 = new Person("Sandra");
 Person p3 = new Person("Lilli");
 Person p4 = new Person("Anton");

 List<Person> persons = Arrays.asList(p1, p2, p3, p4);

 System.out.println(p1); // -> Gerrit

}

MEMORY MANAGEMENT
In the JVM...

Stack area for thread 1

Frame for main

Person p1 = ref
Person p2 = ref
Person p3 = ref
Person p4 = ref
List<Person> persons = ref

Heap area

Person object p1

Person object p2

Person object p3

Person object p4

List object

public static void main(String[] args) {

 record Person(String name) {
 @Override public String toString() { return name(); }
 }

 Person p1 = new Person("Gerrit");
 Person p2 = new Person("Sandra");
 Person p3 = new Person("Lilli");
 Person p4 = new Person("Anton");

 List<Person> persons = Arrays.asList(p1, p2, p3, p4);

 System.out.println(p1); // -> Gerrit

}

MEMORY MANAGEMENT
In the JVM...

Stack area for thread 1

Frame for main

Person p1 = ref
Person p2 = ref
Person p3 = ref
Person p4 = ref
List<Person> persons = ref

Heap area

Person object p1

Person object p2

Person object p3

Person object p4

List objectAll 4 persons and the list
are reachable

public static void main(String[] args) {

 record Person(String name) {
 @Override public String toString() { return name(); }
 }

 Person p1 = new Person("Gerrit");
 Person p2 = new Person("Sandra");
 Person p3 = new Person("Lilli");
 Person p4 = new Person("Anton");

 List<Person> persons = Arrays.asList(p1, p2, p3, p4);

 System.out.println(p1); // -> Gerrit

 p1 = null;

}

MEMORY MANAGEMENT
In the JVM...

Stack area for thread 1

Frame for main

Person p1 = null
Person p2 = ref
Person p3 = ref
Person p4 = ref
List<Person> persons = ref

Heap area

Person object p1

Person object p2

Person object p3

Person object p4

List objectSetting p1 = null

public static void main(String[] args) {

 record Person(String name) {
 @Override public String toString() { return name(); }
 }

 Person p1 = new Person("Gerrit");
 Person p2 = new Person("Sandra");
 Person p3 = new Person("Lilli");
 Person p4 = new Person("Anton");

 List<Person> persons = Arrays.asList(p1, p2, p3, p4);

 System.out.println(p1); // -> Gerrit

 p1 = null;

 System.out.println(persons.get(0)); // -> Gerrit

}

MEMORY MANAGEMENT
In the JVM...

Stack area for thread 1

Frame for main

Person p1 = null
Person p2 = ref
Person p3 = ref
Person p4 = ref
List<Person> persons = ref

Heap area

Person object p1

Person object p2

Person object p3

Person object p4

List objectPerson 1 is still reachable
via the persons list

public static void main(String[] args) {

 record Person(String name) {
 @Override public String toString() { return name(); }
 }

 Person p1 = new Person("Gerrit");
 Person p2 = new Person("Sandra");
 Person p3 = new Person("Lilli");
 Person p4 = new Person("Anton");

 List<Person> persons = Arrays.asList(p1, p2, p3, p4);

 System.out.println(p1); // -> Gerrit

 p1 = null;

 System.out.println(persons.get(0)); // -> Gerrit

 persons = null;
}

MEMORY MANAGEMENT
In the JVM...

Stack area for thread 1

Frame for main

Person p1 = null
Person p2 = ref
Person p3 = ref
Person p4 = ref
List<Person> persons = null

Heap area

Person object p1

Person object p2

Person object p3

Person object p4

List objectSetting persons = null

public static void main(String[] args) {

 record Person(String name) {
 @Override public String toString() { return name(); }
 }

 Person p1 = new Person("Gerrit");
 Person p2 = new Person("Sandra");
 Person p3 = new Person("Lilli");
 Person p4 = new Person("Anton");

 List<Person> persons = Arrays.asList(p1, p2, p3, p4);

 System.out.println(p1); // -> Gerrit

 p1 = null;

 System.out.println(persons.get(0)); // -> Gerrit

 persons = null;
}

MEMORY MANAGEMENT
In the JVM...

Stack area for thread 1

Frame for main

Person p1 = null
Person p2 = ref
Person p3 = ref
Person p4 = ref
List<Person> persons = null

Heap area

Person object p1

Person object p2

Person object p3

Person object p4

List objectOnly p2, p3 and p4 are
reachable

public static void main(String[] args) {

 record Person(String name) {
 @Override public String toString() { return name(); }
 }

 Person p1 = new Person("Gerrit");
 Person p2 = new Person("Sandra");
 Person p3 = new Person("Lilli");
 Person p4 = new Person("Anton");

 List<Person> persons = Arrays.asList(p1, p2, p3, p4);

 System.out.println(p1); // -> Gerrit

 p1 = null;

 System.out.println(persons.get(0)); // -> Gerrit

 persons = null;
}

MEMORY MANAGEMENT
In the JVM...

Stack area for thread 1

Frame for main

Person p1 = null
Person p2 = ref
Person p3 = ref
Person p4 = ref
List<Person> persons = null

Heap area

Person object p1

Person object p2

Person object p3

Person object p4

List objectp1 and persons are
garbage

HOW tO get
rid OF it...?

GArbAge
COllectiOn

GARBAGE COLLECTION
What is it...

Form of automatic memory management

GARBAGE COLLECTION
What is it...

Form of automatic memory management

Identifies and reclaims no longer used memory

GARBAGE COLLECTION
What is it...

Form of automatic memory management

Identifies and reclaims no longer used memory

Ensures efficient memory utilisation

GARBAGE COLLECTION
What is it...

Form of automatic memory management

Identifies and reclaims no longer used memory

Ensures efficient memory utilisation

Frees user from managing the memory manually

StOPping the
WORLD

STOPPING THe W RLD
Halt of all application threads

Application
Threads

Application
Threads

GC Threads

JVM
Safe Point

Safe Point
Signal

cOnservAtive
And

Precise

GARBAGE COLLECTION
Conservative and Precise

Conservative does not fully identify all object references
(assumes any bit pattern in memory could be a reference, lead to more false positives)

GARBAGE COLLECTION
Conservative and Precise

Conservative does not fully identify all object references
(assumes any bit pattern in memory could be a reference, lead to more false positives)

Precise correctly identifies all references in an object
(needed in order to move objects)

PHASeS
(precise collectors)

TrAcing
Identify live objects in the heap

TRACING
Principle

Traverse graph starting from roots
(only live objects)

TRACING
Principle

Traverse graph starting from roots
(only live objects)

Mark all reachable objects

FReeING
Reclaim resources held by dead objects

FREEING
Principle

Traverse whole heap space
(not only live objects)

FREEING
Principle

Traverse whole heap space
(not only live objects)

Clear unmarked objects

FREEING
Principle

Traverse whole heap space
(not only live objects)

Clear unmarked objects

Remove marked bits from marked objects

cOmpactiOn
Periodically relocate live objects

PHASES
Two ways of compaction

Moving
Move all live objects to the beginning of the same area (e.g. heap)

PHASES
Two ways of compaction

Moving
Move all live objects to the beginning of the same area (e.g. heap)

Copying
Move all live objects to another area, the former area only contains garbage and can be freed

PHASES
Remapping in moving collectors

Free Cell

Referenced Cell

Root

Original reference

PHASES
Remapping in moving collectors

Free Cell

Referenced Cell

Root

Original reference

Move object

PHASES
Remapping in moving collectors

Free Cell

Referenced Cell

Root

Remapped reference

Original reference

COllectOrs

NOn mOving
cOllectOr

Mark & Sweep

NON MOVING COLLeCTOR
Free Cell

Referenced Cell

Dereferenced Cell

Marked Cell

1 Referenced Cell (survived 1 GC)

Demo
1. Mutator allocates cells in Heap

2. Heap is out of memory -> GC

3. Mark all live cells

4. Free all dead cells

5. Unmark all live cells

6. Resume Mutator

Fragmentation

MOving
COLLeCTORs

Compacting Collector & Copy Collector

cOmpActing
COLLeCTOR

Mark & Compact

COMPACTING COLLeCTOR
Demo

Free Cell

Referenced Cell

Dereferenced Cell

Marked Cell

1 Referenced Cell (survived 1 GC)

1. Mutator allocates cells in Heap

2. Heap is out of memory -> GC

3. Mark all live cells

4. Free all dead cells

5. Unmark all live cells

6. Compact all live cells

7. Resume Mutator
Headroom

20-50%

COpy
COLLeCTOR

Mark & Copy

To Space

From Space

Demo
COpy COLLeCTOR

Free Cell

Referenced Cell

Dereferenced Cell

Marked Cell

1 Referenced Cell (survived 1 GC)

1. Allocating in ToSpace

2. ToSpace is out of memory -> GC

3. Toggle To- and FromSpace

4. Mark live cells in FromSpace

5. Copy live cells to ToSpace

6. Free all cells in FromSpace

7. Resume Mutator
Long living

objects and twice
as much memory

GenerAtiOnAl
COLLeCTOR

Generational Mark & Compact

GenerAtiOnAl COLLeCTOR
Weak Generational Hypothesis (Most objects die young)

medium
living

short
living

long
living

LIFETIME OF OBJECTS

N
U

M
B

ER
 O

F
O

B
JE

C
TS

medium
living

short
living

long
living

medium
living

short
living

long
living

Weak Generational Hypothesis (Most objects die young)

LIFETIME OF OBJECTS

N
U

M
B

ER
 O

F
O

B
JE

C
TS

Major collectionMinor collection

Survivor
SpacesEden

Tenured
Space

Old GenerationYoung Generation

Full collection

Eden space for
short living objects
(can be collected quickly)

Survivor spaces for
medium living objects

Tenured space for
long living objects

GenerAtiOnAl COLLeCTOR

GenerAtiOnAl COLLeCTOR

Eden Space

To Space

From Space

Tenured Space

Young Generation Old Generation

Demo
Free Cell

Referenced Cell

Dereferenced Cell

Marked Cell

1 Referenced Cell (survived 1 GC)

1. Mutator allocates cells in Eden

2. Eden is out of memory -> GC

3. Toggle To- and FromSpace

4. Copy all live cells from
FromSpace to ToSpace

5. Copy all live cells from Eden to
ToSpace

6. Promote live cells from
FromSpace to TenuredSpace

7. Free all dead cells

8. Resume Mutator

Remembered
Set

Intergenerational References

remembered set

How to do a minor collection
with references from old to

young generation...?

remembered set
Also known as Card Table

Free Cell

Referenced Cell

Dereferenced Cell

Marked Cell

Roots

Old GenerationYoung Gen

Free Cell

Referenced Cell

Dereferenced Cell

Marked Cell

Roots

Old GenerationYoung Gen

Minor GC

remembered set
Also known as Card Table

Free Cell

Referenced Cell

Dereferenced Cell

Marked Cell

Roots

Old GenerationYoung Gen

Minor GC

remembered set
Also known as Card Table

Free Cell

Referenced Cell

Dereferenced Cell

Marked Cell

Roots

Old GenerationYoung Gen

Minor GC

remembered set
Also known as Card Table

Free Cell

Referenced Cell

Dereferenced Cell

Marked Cell

Roots

Old GenerationYoung Gen

Minor GC

remembered set
Also known as Card Table

Free Cell

Referenced Cell

Dereferenced Cell

Marked Cell

?

Roots

Old GenerationYoung Gen

Minor GC

remembered set
Also known as Card Table

Free Cell

Referenced Cell

Dereferenced Cell

Marked Cell

?

Roots

Old GenerationYoung Gen

0 1 00

Marked in Card Table

Minor GC

remembered set
Also known as Card Table

Free Cell

Referenced Cell

Dereferenced Cell

Marked Cell

Roots

Old GenerationYoung Gen

0 1 00

Marked in Card Table

GC looks up Card Table,
finds the reference and

marks it as live

Minor GC

remembered set
Also known as Card Table

CONCURReNT
COLLeCTION ?

CONCURReNCY
IS

HARD...

CONCURReNT
MARKING

CONCURReNCY IS HARD...
Concurrent Marking

Not visited

Live

Reachable

Root

Not visited

Live

Reachable

Root

Concurrent Marking

Collector starts marking objects

CONCURReNCY IS HARD...

Not visited

Live

Reachable

Root

Concurrent Marking
CONCURReNCY IS HARD...

Not visited

Live

Reachable

Root

Concurrent Marking

Mutator removes reference and creates a new one from an already visited cell !

App.
Thread

CONCURReNCY IS HARD...

Not visited

Live

Reachable

Root

Concurrent Marking

Mutator removes reference and creates a new one from an already visited cell !

App.
Thread

CONCURReNCY IS HARD...

CONCURReNCY IS HARD...

Not visited

Live

Reachable

Root

Concurrent Marking

Won't be detected by the Garbage Collector !

Not visited

Live

Reachable

Root

Won't be detected by the Garbage Collector !

Concurrent Marking
CONCURReNCY IS HARD...

???

BARRIeRS TO
THe ReSCUe

bArriers
Read / Write Barriers

Mechanisms to execute memory management code when a
read/write on some object takes place

bArriers
Read / Write Barriers

Mechanisms to execute memory management code when a
read/write on some object takes place

Used to keep track of inter-generational references.
(references from old generation to young generation, the so called Rembered Set)

bArriers
Read / Write Barriers

Mechanisms to execute memory management code when a
read/write on some object takes place

Used to keep track of inter-generational references.
(references from old generation to young generation, the so called Rembered Set)

Used to synchronize action between mutator and collector
(allocation concurrent to collection)

bArriers
Read / Write Barriers

Mechanisms to execute memory management code when a
read/write on some object takes place

Used to keep track of inter-generational references.
(references from old generation to young generation, the so called Rembered Set)

Used to synchronize action between mutator and collector
(allocation concurrent to collection)

Read Barriers are usually more expensive
(reads 75% to writes 25% -> Read Barriers must be very efficient)

CONCURReNCY IS HARD...

Not visited

Live

Reachable

Root

Concurrent Marking using Write Barriers

Not visited

Live

Reachable

Root

Collector starts marking objects

Concurrent Marking using Write Barriers

WB

CONCURReNCY IS HARD...

Not visited

Live

Reachable

Root
WB

Concurrent Marking using Write Barriers

WB

CONCURReNCY IS HARD...

Not visited

Live

Reachable

Root
WB

Mutator hits write barrier and removes reference and adds a new one

Concurrent Marking using Write Barriers

WB

App.
Thread

CONCURReNCY IS HARD...

Not visited

Live

Reachable

Root
WB

Mutator hits write barrier and removes reference and adds a new one

Concurrent Marking using Write Barriers

WB

App.
Thread

CONCURReNCY IS HARD...

Not visited

Live

Reachable

Root
WB

Removed references will be marked as reachable by Write Barrier

Concurrent Marking using Write Barriers

WB

WB

CONCURReNCY IS HARD...

Not visited

Live

Reachable

Root

Concurrent Marking using Write Barriers

WB WB

WB

WB

CONCURReNCY IS HARD...

Not visited

Live

Reachable

Root

Concurrent Marking using Write Barriers

WB

WB

WB

WB

WB

CONCURReNCY IS HARD...

Not visited

Live

Reachable

Root

Concurrent Marking using Write Barriers

WB

WB

WB

WB

WB

WB

WB

CONCURReNCY IS HARD...

Not visited

Live

Reachable

Root

Concurrent Marking using Write Barriers

WB

WB

WB

WB

WB

WB

WB

WB

CONCURReNCY IS HARD...

Not visited

Live

Reachable

Root

Concurrent Marking using Write Barriers

WB

WB

WB

WB

WB

WB

WB

WB

CONCURReNCY IS HARD...

Not visited

Live

Reachable

Root

In the Re-Marking phase, in between marked references will be marked as live

Concurrent Marking using Write Barriers

WB

WB

WB

WB

WB

WB

WB

WB

CONCURReNCY IS HARD...

Not visited

Live

Reachable

Root

In the Re-Marking phase, in between marked references will be marked as live

Concurrent Marking using Write Barriers

WB

WB

WB

WB

WB

WB

WB

WB

CONCURReNCY IS HARD...

CONCURReNT
COPYING

Stop the world copying

HEADERS

x = 1

y = 2

Z = 3

FROM Space

References

TO Space

CONCURReNCY IS HARD...

HEADERS

x = 1

y = 2

Z = 3

STOP

Stop the World
(the Mutator)

References

Stop the world copying

FROM Space TO Space

CONCURReNCY IS HARD...

HEADERS

x = 1

y = 2

Z = 3

STOP

Copy the Object
(Create forwarding pointer)

References

Stop the world copying

FROM Space TO Space

HEADERS

x = 1

y = 2

Z = 3

CONCURReNCY IS HARD...

FORWARDING

x = 1

y = 2

Z = 3

HEADERS

x = 1

y = 2

Z = 3

STOP

Update all references
(Save the pointer that fowards the copy)

References

Stop the world copying

FROM Space TO Space

CONCURReNCY IS HARD...

FORWARDING

x = 1

y = 2

Z = 3

HEADERS

x = 1

y = 2

Z = 3

STOP

Update all references
(Walk the heap and replace all references
with forwarding pointer to new location)

References

Stop the world copying

FROM Space TO Space

CONCURReNCY IS HARD...

FORWARDING

x = 1

y = 2

Z = 3

HEADERS

x = 1

y = 2

Z = 3

STOP

Update all references
(Walk the heap and replace all references
with forwarding pointer to new location)

References

Stop the world copying

FROM Space TO Space

CONCURReNCY IS HARD...

HEADERS

x = 1

y = 2

Z = 3

Remove old objects and
continue running the Mutator

References

Stop the world copying

FROM Space TO Space

CONCURReNCY IS HARD...

HEADERS

x = 1

y = 2

Z = 3

References

Concurrent copying

FROM Space TO Space

CONCURReNCY IS HARD...

HEADERS

x = 1

y = 2

Z = 3

HEADERS

x = 1

y = 2

Z = 3

While copying
the Object...

Concurrent copying

FROM Space TO Space

References

CONCURReNCY IS HARD...

HEADERS

x = 1

y = 2

Z = 3

HEADERS

x = 1

y = 2

Z = 3

While copying
the Object...

Concurrent copying

FROM Space TO Space

References

CONCURReNCY IS HARD...

FORWARDING

HEADERS

x = 1

y = 2

Z = 3

HEADERS

x = 1

y = 2

Z = 3

...when updating the
references...

References

Concurrent copying

FROM Space TO Space

CONCURReNCY IS HARD...

FORWARDING

HEADERS

x = 1

y = 2

Z = 3

HEADERS

x = 1

y = 2

Z = 3

...both Objects are
reachable !

Concurrent copying

FROM Space TO Space

References

CONCURReNCY IS HARD...

FORWARDING

x = 1

y = 2

Z = 3

HEADERS

x = 1

y = 2

Z = 3

HEADERS
...both Objects are

reachable !
And can be accessed
in parallel by different

Threads.

Concurrent copying

FROM Space TO Space

References

CONCURReNCY IS HARD...

FORWARDING

x = 1

y = 5

Z = 3

HEADERS

x = 4

y = 2

Z = 3

HEADERS Threads can write to
both Objects !

Thread
B

Thread
A

Concurrent copying

FROM Space TO Space

References

CONCURReNCY IS HARD...

FORWARDING

x = 1

y = 5

Z = 3

HEADERS

x = 4

y = 2

Z = 3

HEADERS Threads can write to
both Objects !

Which copy is correct ?

Thread
B

Thread
A

Concurrent copying

FROM Space TO Space

References

CONCURReNCY IS HARD...

FORWARDING

FORWARDING

x = 1

y = 2

Z = 3

References

HEADERS

Solution could be
installing a

Brooks Pointer...

Concurrent copying

FROM Space TO Space

CONCURReNCY IS HARD...

FORWARDING

x = 1

y = 2

Z = 3

References

HEADERS

...which points to object
header itself

Concurrent copying

FROM Space TO Space

CONCURReNCY IS HARD...

Copy the Object

References

FORWARDING

x = 1

y = 2

Z = 3

HEADERS

FORWARDING

x = 1

y = 2

Z = 3

HEADERS

Concurrent copying

FROM Space TO Space

CONCURReNCY IS HARD...

Install forwarding pointer
to itself

References

FORWARDING

x = 1

y = 2

Z = 3

HEADERS

FORWARDING

x = 1

y = 2

Z = 3

HEADERS

Concurrent copying

FROM Space TO Space

CONCURReNCY IS HARD...

Nobody knows about copy

References

FORWARDING

x = 1

y = 2

Z = 3

HEADERS

FORWARDING

x = 1

y = 2

Z = 3

HEADERS

Concurrent copying

FROM Space TO Space

CONCURReNCY IS HARD...

Atomically update forwarding
pointer of original object

to new copy

References

FORWARDING

x = 1

y = 2

Z = 3

HEADERS

FORWARDING

x = 1

y = 2

Z = 3

HEADERS

Concurrent copying

FROM Space TO Space

CONCURReNCY IS HARD...

FORWARDING

x = 4

y = 5

Z = 3

HEADERS

FORWARDING

x = 1

y = 2

Z = 3

HEADERS

Threads now will always
find the right object

Thread
B

Thread
A

References

Concurrent copying

FROM Space TO Space

CONCURReNCY IS HARD...

FORWARDING

x = 4

y = 5

Z = 3

HEADERS

FORWARDING

x = 1

y = 2

Z = 3

HEADERS

When all references
are updated...

References

Concurrent copying

FROM Space TO Space

CONCURReNCY IS HARD...

FORWARDING

x = 4

y = 5

Z = 3

HEADERS

Remove the old object

References

Concurrent copying

FROM Space TO Space

CONCURReNCY IS HARD...

COllectOrs
in the JVM

SErial
Serial

AVAILABILITY

PARALLEL

CONCURRENT

GENERATIONAL

HEAP SIZE

PAUSE TIMES

THROUGHPUT

LATENCY

CPU OVERHEAD

SERIaL

Single core systems with small heap (<4GB)
No pause time requirements

ALL JDK'S

NO

NO

YES

SMALL - MEDIUM

LONGER

LOW

HIGHER

LOW (1-5%) JVM SWITCH > java -XX:+UseSerialGC

CHOOSE WHEN

BEST SUITED FOR

Single threaded applications
Development environments
Microservices on small nodes

Serial

OS SUPPORT

Automatically selected if only a single processor is available

Automatically selected if the avail. memory less than 1792 MB

SERIaL
NOTES

Serial

Application
Threads

Application
Threads

GC Thread

Application
Threads

Application
Threads

GC Thread

Young Generation Old Generation

Parallel

parallEl

AVAILABILITY

PARALLEL

CONCURRENT

GENERATIONAL

HEAP SIZE

PAUSE TIMES

THROUGHPUT

LATENCY

CPU OVERHEAD

parallEl

Multi-core systems with small heap (<4GB)
Peak performance is needed without pause time
requirements

ALL JDK'S

YES

NO

YES

MEDIUM - LARGE

MODERATE

HIGH

LOWER

MODERATE (5-10%) JVM SWITCH > java -XX:+UseParallelOldGC

CHOOSE WHEN

BEST SUITED FOR

Batch processing
Scientific computing
Data analysis

Parallel

OS SUPPORT

Default garbage collector from JDK 5 to JDK 8

parallEl
NOTES

Parallel

Application
Threads

Application
Threads

GC Threads

Application
Threads

Application
Threads

GC Thread

Young Generation Old Generation

CMS

CMS

DEPR
ECA

TED
Concurrent Mark and Sweep

AVAILABILITY

PARALLEL

CONCURRENT

GENERATIONAL

HEAP SIZE

PAUSE TIMES

THROUGHPUT

LATENCY

CPU OVERHEAD

CMS

Response time is more important than throughput
Pause time must be kept shorter than 1 sec

JDK 1.4 - 13

YES

PARTIALLY

YES

MEDIUM - LARGE

MODERATE

MODERATE

MODERATE

MODERATE (5-15%) JVM SWITCH > java -XX:+UseConcMarkSweepGC

CHOOSE WHEN

BEST SUITED FOR

Web applications
Mediums sized enterprise systems

CMS

OS SUPPORT

Deprecated as of JDK 9

Removed from JDK 14

Concurrent marking

CMS
NOTES

CMS

Application
Threads

STW
Initial

Marking

Application
+ Concurrent

Marking

STW
Remarking

Application
+ Concurrent

Sweeping

G1

G1
Garbage First

G1
Heap-Layout

G1

Max no. of region <= 2048

8 GB Heap = 8192 MB

8192 MB / 2048 = 4 MB region size

Heap Region
< 4 GB - 1 MB
< 8 GB - 2 MB
< 16 GB - 4 MB
< 32 GB - 8 MB
< 64 GB - 16 MB
> 64 GB - 32 MB

Example 8GB Heap:

Region size 1 - 32 MB

Unassigned region

G1
Heap-Layout

G1

Max no. of region <= 2048

8 GB Heap = 8192 MB

8192 MB / 2048 = 4 MB region size

Heap Region
< 4 GB - 1 MB
< 8 GB - 2 MB
< 16 GB - 4 MB
< 32 GB - 8 MB
< 64 GB - 16 MB
> 64 GB - 32 MB

Eden region

Survivor region

Tenured region

Unassigned region

Example 8GB Heap:

Region size 1 - 32 MB

Young Gen
5 - 60%

Humongous region
(> 0.5 * Region size)

Old Gen

G1
Heap-Layout

G1

Max no. of region <= 2048

8 GB Heap = 8192 MB

8192 MB / 2048 = 4 MB region size

Heap Region
< 4 GB - 1 MB
< 8 GB - 2 MB
< 16 GB - 4 MB
< 32 GB - 8 MB
< 64 GB - 16 MB
> 64 GB - 32 MB

Example 8GB Heap:

Region size 1 - 32 MB

Example:
6 Eden Regions
3 Survivor Regions

2 Regions with most garbage will
be collected/promoted

Eden region

Survivor region

Tenured region

Unassigned region

Young Gen
5 - 60%

Humongous region
(> 0.5 * Region size)

Old Gen

AVAILABILITY

PARALLEL

CONCURRENT

GENERATIONAL

HEAP SIZE

PAUSE TIMES

THROUGHPUT

LATENCY

CPU OVERHEAD

G1

Response time is more important than throughput
Pause time should be around 200 ms
Heap size is not larger than 16-32 GB

JDK 7U4+

YES

PARTIALLY

YES

MEDIUM - LARGE

SHORT - MEDIUM

HIGH

LOWER

MODERATE (5-15%) JVM SWITCH > java -XX:+UseG1GC

CHOOSE WHEN

BEST SUITED FOR

Mixed workloads
Large sized enterprise systems
Responsive in medium to large heaps

G1

OS SUPPORT

Default collector from JDK 9 onwards

Concurrent marking

G1
NOTES

G1

Application
Threads

STW
Young Gen. +
Initial Marking

Application
+ Conc. Root

Scanning

STW
Remarking

Application
+ Conc. Mark

STW
Copy

Partly
STW

Cleanup

Epsilon

EpsilOn

AVAILABILITY

PARALLEL

CONCURRENT

GENERATIONAL

HEAP SIZE

PAUSE TIMES

THROUGHPUT

LATENCY

CPU OVERHEAD

Epsilon

EPSILON
JDK 11+

-

-

-

-

-

-

-

VERY LOW JVM SWITCH > java -XX:+UnlockExperimentalVMOptions -XX:+UseEpsilonGC

CHOOSE WHEN

BEST SUITED FOR

Testing performance or memory pressure
Highest performance is needed and nearly no
garbage is created

Extremely short lived jobs
Last drop latency improvements
Last drop throughput improvements

OS SUPPORT

Shenandoah

ShEnandOah

AVAILABILITY

PARALLEL

CONCURRENT

GENERATIONAL

HEAP SIZE

PAUSE TIMES

THROUGHPUT

LATENCY

CPU OVERHEAD

shEnandOah

Response time is a high priority
Using a very large heap (100GB+)
Predictable response times needed

JDK 11.0.9+

YES

FULLY

NO

MEDIUM - LARGE

SHORT

VERY HIGH

VERY LOW

MODERATE (10-20%) JVM SWITCH > java -XX:+UseShenandoahGC

CHOOSE WHEN

BEST SUITED FOR

Latency sensitive applications
Large scale systems
Highly concurrent applications

Shenandoah

OS SUPPORT

Not available in Oracle JDK

A bit reduced throughput due to concurrent GC

Makes use of new barrier concept, load reference barrier

shEnandOah
NOTES

Shenandoah

ZGC

ZGC
Z Garbage Collector

ZGC
ZGC

Heap-Layout

O

Y

Y

O

Y

O

O

Y

O

O

Y

Y

O

O

Y

O

Y

O

O

O

O

Y

Y

Y

O

O

O

O

y

Y

O

HEAP

EMPTY REGION

YOUNG GEN REGION

OLD GEN REGION

AVAILABILITY

PARALLEL

CONCURRENT

GENERATIONAL

HEAP SIZE

PAUSE TIMES

THROUGHPUT

LATENCY

CPU OVERHEAD

ZGC

Response time is a high priority
Using a very large heap (100GB+)
Predictable response times needed

JDK 15 / 21+

YES

FULLY

NO / YES

LARGE

SHORT

VERY HIGH

VERY LOW

MODERATE (10-20%) JVM SWITCH > java -XX:+UseZGC -XX:+ZGenerational*

CHOOSE WHEN

BEST SUITED FOR

Low latency sensitive applications
Large scale systems
Highly concurrent applications

ZGC

OS SUPPORT

* Not needed in the future, because generational ZGC will become the default

Non-generational version will be deprecated

ZGC
NOTES

ZGC

C4

C4
Concurrent Continues Compacting Collector

Part of Azul Zing JVM

Makes use of Loaded Value Barrier (LVB) everywhere
(Test + Jump which only takes 1 cpu cycle -> very fast)

LVB is read and write barrier
(guaranteed to be hit on every access)

Best performance by using Transparent Huge Pages
(Normal page size 4kB, THP size 2MB)

C4
NOTES

C4

C4
C4

MArking
PhAse

Root

Marking Phase
C4

C4

LVBLVB

LVB

LVB

LVB

GC
Threads

M

M

LVB

LVB

LVB

M

M

Root

Marking Phase
C4

C4

LVBLVB

LVB

LVB

LVB

GC
Threads

M

M

LVB

LVB

LVB

M

M

M

M

Root

Marking Phase
C4

C4

LVBLVB

LVB

LVB

LVB

GC
Threads

M

M

M

LVB

LVB

LVB

M

M

M

M

Root

Marking Phase
C4

C4

LVBLVB

LVB

LVB

LVB

GC
Threads

M

M

M

LVB

LVB

LVB

M

M

M

M

Root

Marking Phase
C4

C4

LVBLVB

LVB

LVB

LVB

GC
Threads

M

App.
Thread

M

M

LVB

LVB

LVB

M

M

M

M

Root

Marking Phase
C4

C4

LVBLVB

LVB

LVB

LVB

GC
Threads

M

Trigger LVB

App.
Thread

M

LVB

LVB

LVB

M

M

M

M

Root

Marking Phase
C4

C4

LVBLVB

LVB

LVB

LVB

GC
Threads

M

Test+Jump

App.
Thread

M

LVB

LVB

LVB

M

M

M

M

Root

Marking Phase
C4

C4

LVBLVB

LVB

LVB

LVB

GC
Threads

M

Mark

App.
Thread

M

M

LVB

LVB

LVB

M

M

M

M

Root

Marking Phase
C4

C4

LVBLVB

LVB

LVB

LVB

GC
Threads

M

Hand over
to GC

App.
Thread

M

M

LVB

LVB

LVB

M

M

M

M

Root

Marking Phase
C4

C4

LVBLVB

LVB

LVB

LVB

GC
Threads

M

No need to mark
again by GC !

App.
Thread

M

M

LVB

LVB

LVB

M

C4
C4

quick
releAse

C4
Relocation Phase

C4

Virtual

Memory

A B C D E

Virtual

Region

Physical

C4
C4

Virtual

Memory

A B C D E

A' Virtual

A > A'

Off-Heap Page

Move the object

Relocation Phase (Compaction)

Store mapping in off-heap page
(no forwarding pointer)

Physical

Physical

C4
C4

Virtual

Memory

A B C D E

A' B' Virtual

A > A' B > B'

Off-Heap Page

Relocation Phase (Compaction)

Physical

Physical

No mapping information in the object header -> direct release of physical memory

C4
C4

Virtual

Memory

A B C D E

A' B' Virtual

A > A' B > B'

Off-Heap Page

Relocation Phase (Compaction)

Physical

Physical

No mapping information in the object header -> direct release of physical memory

C4
C4

Virtual

Memory

A B C D E

A' B' C' Virtual

A > A' B > B' C > C'

Off-Heap Page

Relocation Phase (Compaction)

Physical

Physical

C4
C4

Virtual

Memory

A B C D E

A' B' C' D' Virtual

A > A' B > B' C > C' D > D'

Off-Heap Page

Relocation Phase (Compaction)

Physical

Physical

C4
C4

Virtual

Memory

A B C D E

A' B' C' D' VirtualE'

A > A' B > B' C > C' D > D' E > E'

Off-Heap Page

Relocation Phase (Compaction)

Physical

Physical

C4
C4

Virtual

Physical

Memory

A B C D E

A' B' C' D' Virtual

Physical

E'

A > A' B > B' C > C' D > D' E > E'

Off-Heap Page

Relocation Phase (Quick Release)

App thread tries to access old location following the old reference and hits the LVB

App.
Thread

LVB

C4
C4

Virtual

Physical

Memory

A B C D E

A' B' C' D' Virtual

Physical

E'

A > A' B > B' C > C' D > D' E > E'

Off-Heap Page

Relocation Phase (Quick Release)

Gets new location from Off-Heap forwarding page

App.
Thread

C4
C4

Virtual

Physical

Memory

A B C D E

A' B' C' D' Virtual

Physical

E'

A > A' B > B' C > C' D > D' E > E'

Off-Heap Page

Relocation Phase (Quick Release)

Updates the reference and can access object at new location

App.
Thread

AVAILABILITY

PARALLEL

CONCURRENT

GENERATIONAL

HEAP SIZE

PAUSE TIMES

THROUGHPUT

LATENCY

CPU OVERHEAD

C4

Response time is a high priority
Using a very large heap (100GB+)
Predictable response times needed

AZUL ZING JVM

YES

FULLY

YES

LARGE

SHORT

VERY HIGH

VERY LOW

MODERATE (10-20%) JVM SWITCH > -

CHOOSE WHEN

BEST SUITED FOR

Low latency sensitive applications
Large scale systems
Highly concurrent applications

C4

OS SUPPORT

Only available in Azul Zing JVM

No performance overhead because of faster Falcon compiler

C4
NOTES

C4

Mark Relocate Remap

Mark Relocate Remap

Mark Relocate Remap
App Thread

App Thread

GC Thread

GC Thread

Which One...?

Which One...?
Essential Criteria

Throughput
Percentage of total time spent in application vs. memory allocation and garbage collection

Which One...?
Essential Criteria

Throughput
Percentage of total time spent in application vs. memory allocation and garbage collection

Latency
Application responsiveness, affected by gc pauses

Which One...?
Essential Criteria

Throughput
Percentage of total time spent in application vs. memory allocation and garbage collection

Latency
Application responsiveness, affected by gc pauses

Resource usage
The working set of a process, measured in pages and cache lines

Which One...?
Essential Criteria

2
out of

3

Very Low
Latency

Very high
throughput

Low resource
usage

which One...?
Choose dependent on your workload

C4*, ZGC, Shenandoah

G1, CMS

Parallel, Serial

1 ms 10 ms 100 ms 1 s 10 s

Pause times

Runtime overhead

20% 15 % 10 % 5% 0%

* C4 has less overhead due to faster Falcon compiler

Overview

Overview

Serial Parallel CMS G1 Epsilon Shenandoah ZGC C4

Serial GC Parallel GC CMS GC G1 Epsilon Shenandoah ZGC C4

Availability ALL JDK's ALL JDK's JDK 1.4-13 JDK 7u4+ JDK 11+ JDK 11.0.9+ JDK15 / 21+ Azul Prime

Parallel NO YES YES YES YES YES YES

Concurrent NO NO PARTIALLY PARTIALLY FULLY FULLY FULLY

Generational YES YES YES YES NO NO / YES YES

Heap Size SMALL - MEDIUM MEDIUM - LARGE MEDIUM - LARGE MEDIUM - LARGE LARGE VERY LARGE VERY LARGE

Pause Times LONGER MODERATE MODERATE SHORT - MEDIUM
VERY SHORT

(<10ms)
VERY SHORT

(<1ms)
VERY SHORT

(<1ms)

Throughput LOW HIGH MODERATE HIGH VERY HIGH VERY HIGH VERY HIGH

Latency HIGHER LOWER MODERATE LOWER VERY LOW VERY LOW VERY LOW

Performance LOWER HIGHER MODERATE HIGHER VERY HIGH VERY HIGH VERY HIGH VERY HIGH

CPU Overhead LOW LOWER MODERATE MODERATE VERY LOW LOW - MODERATE MODERATE - HIGH MODERATE - HIGH

Tail latency HIGH HIGH HIGH HIGH MODERATE LOW LOW

wAnnA knOw
mOre ?

WANNA KNOW MORE ?
R. Jones et al. “The Garbage Collection Handbook”. Chapman & Hall/CRC, 2012

thank yOu
G1EpsilonCMSParallel ZGCSerial Shenandoah C4Epsilon

