
1.

JQuantLib
A framework for Quantitative Finance written in Java

2. Quantitative Finance

What is Quantitative Finance?

Valuation of financial instruments
Involves complex mathematics and statistics

How it is used?

Model trading strategies
Determine optimal investment portfolios
Testing of new models and strategies
Risk valuation and management

3. Background
JQuantLib is based on QuantLib (implemented in C++)

Started in 2000
~35 developers
MSVC++ / GCC
Production quality v0.9.7 (November 18th, 2008)
Near 2m lines of code
Ported several languages (C# (QLNet), Python, Perl,
Ruby...)

QuantLib

4. The Need of JQuantLib

SWIG wrappers: inconvenient, incomplete, wrong
JNI: inconvenient, complex, counterproductive
SWIG/JNI: Difficult customization / extensiblity

Evaluation of QuantLib showed

Alternatives
 Integration via J2EE and CORBA containers

Translate QuantLib to Java : ~1300 classes

QuantLib misses integration with Java

5. Objectives

Translate QuantLib, which is written in C++
Offer syntax and semantics Java developers expect but
keeping JQuantLib API as close as possible to QuantLib API

Be exceptionally well coded, accurate and well documented

Take advantage of features Java can offer

JQuantLib aims...

6. Challenges

Very complex object model (example: Monte Carlo)
Abuse of templates and other idioms

QuantLib (C++)

Other challenges

Maximum accuracy
Very strong type checking at compile time
Relative bad performance of Java
Latency due to Objects and GC

7. Current Status - Jan/2009

Started September 2007
Coding started January 2008
~10 active developer
First release in June 2008
40% of classes translated (January 2009)

8. Features

Day counters, calendars, IMM
Term structures, yield structures
Instruments: stocks, options, bonds, swaps, etc
Methods: Black-Scholes, binomial, LMM, MonteCarlo,
low-discrepancy numbers, etc

From QuantLib

JQuantLib specific (planned)

OSGi support
Support for parallelism (Parallel Colt,
http://piotr.wendykier.googlepages.com/parallelcolt)
Grid enabled

9. Architecture

Build Environment
Quality Assurance
Documentation
Accuracy
Strong Type Checking
Performance

10. Build Environment
Linux
Java6
Eclipse
KDE
Umbrello
SVN
Maven
Continuum
Archiva

11. Quality Assurance
JUnit4
PMD
FindBugs
EclEmma
Cobertura
Mantis

12. Correctness

Strong type checking

Enumerations
Generic types
Annotation on Java types (JSR-308)

Accuracy

Floating point rounding errors

13. Annotations on Java types
double calc(double rate, double year) {
return Math.exp(1+rate,year);
}

double rate = 0.45;
double year = 0.5;

double result1 = calc(rate, year);
double result2 = calc(year, rate); // Wrong, not recognized by the compiler

C++
typedef double Rate;
typedef double Year;
double calc(Rate rate, Year year);

Need for semantic checking
 Erradicate errors at compile time

Test cases are not 100% guaranteed :(

14. JSR-308
private Double calc(@Rate double rate, @Time double time) {
return new Double (Mathc.exp(1+rate, time));
}

@Rate double rate = 0.45;
@Time double time = 0.5;

// This call will pass
Double result1 = calc(rate, time);

// This call can give us a compiler error
Double result2 = calc(time, rate);

Available in JDK7 (target date for JDK7: Early 2010)
Annotations wherever a type is accepted
Annotation processor plugged into compilation phase

http://groups.csail.mit.edu/pag/jsr308/

Link

15. Accuracy
System.out.println(0.1 + 0.1 + 0.1);

0.30000000000000004

Requirements

Primitive types
Calculate epsilon when needed

As accurate as QuantLib (C++)
As lightweight as possible
As fast as possible

Solution

16. Documentation

Requirements
 1. Replace doxygen

Solution

1. UMLGraph
2. LaTeXtaglet

Links
 http://www.umlgraph.org/

 Tool for testing Latex formulas: Laeqed

17. Performance

Comparison with C++
Numbers and Objects
Collections
Math Packages
Parallelism
JVM and gc
Profiling

Topics

Critical requirement
Needed for low latency
Needed for scalability

18. Comparison with C++

http://www.jquantlib.org/index.php/DesignPerformance

32bit integer arithmetic: as fast as
64bit double arithmetic: as fast as
sort algorithms: 50% slower
list operations: 2x slower
matrix operations: 2x to 3x slower
nested loops: 2x slower
trigonometric functions: deadly slow!

Benchmarks in DDJ (Java 5)

19. Collections
Issues
 Not optimised for high performance systems

Expansive object management and reference

Alternatives
 Arrays of primitive types

Optimised JCF implementation

List list = DoubleArrayList(); // backed by an array of doubles
list.add(1.0); // autoboxing :: list.add(new Double(1.0));
(DoubleArrayList)list.add(2.0); // no autoboxing :)
double d = (DoubleArrayList)list.getDouble(0); // no autoboxing

http://fastutil.dsi.unimi.it/

fastutil

20. Math Packages

Colt was developed at CERN

Stable and Reliable
Optimised / High performance
Production grade
Vector and Matrix operations
Linear Algebra
Statistical methods
Last release: v1.2, Sept/04

http://acs.lbl.gov/~hoschek/colt/

21. Parallelism

JQuantLib is thread-safe
Parallel Colt takes advantage of multiple CPUs
Customized JVMs

Levels of parallelism

Parallel Colt
 The natural evolution for Colt

Important factor for selecting Colt
Still in development but no major issues
Last release: v0.6.1, Dec. 2008

 http://piotr.wendykier.googlepages.com/parallelcolt

22. JVM and gc

Some info about Azul appliances
 Getting rid of the JVM scaling issues

Customised JVM
Up to 54 cores per CPU
Up to 16 processors, 860 cores, 768Gb
Grid enabled: can scale even more
Hardware assisted GC
Hardware assisted Java locking
Performance increase: order of hundred times

 http://www.azulsystems.com

JVMs need to be optimised for specific hardware

23.
Profiling

No memory profiling yet
Performance tests are still incipient

24. Next releases

Date: 12th February 2009 / Eclipse Banking Day, London
American Options with Finite Differences
American Options with Integral Engine
Asian Options
Translation and tests of all 35 calendar classes , from 2004 to 2012

Monte Carlo method
Sobol (Quasi Monte Carlo, low-discrepancy numbers)
Bonds

3rd release

4th release - tbd

25. Future

Purpose specific implementations
Hot swap
24x7x365

Pluggable OSGi blundles

Marketplace
 Products and services show case

Cooperation
Forum, wiki
Room for inovation

26.

Thanks :)
http://www.jquantlib.org/

Wer möchte mitarbeiten?

