JQuantLib

A framework for Quantitative Finance written in Java

\ﬁ' ().
ntLib

==JQuantLib==

JQuantLib is a Quantitative Finance framework written in Java.

Quantitative Finance

What is Quantitative Finance?

® Valuation of financial instruments
® [nvolves complex mathematics and statistics

How it is used?

® Model trading strategies

® Determine optimal investment portfolios
® Testing of new models and strategies

® Risk valuation and management

===Quantitative Finance===

But...

What is Quantitative Finace?
Other wordings:

* Mathematical Finance

* Financial Engineering

* Finance Computing

*

It's something which...

* Allows price valuation of financial instruments, such as stocks, options, bonds, futures, etc;

* Involves complex mathematics and statistics like linear algebra, interpolations, extrapolations,
probability distributions, stochastic calculus, etc. Some calculations are CPU intensive and may
consume a lot of resources, like numerical integrations and big matrix operations, to mention a
few.

How Quantitative Finance is used?

It can be used to...

* Model trading strategies and determine optimal investment portfolios needed to forecast return
on investment;

* Risk Valuation risk associated to investments

* Test new products, models and strategies

Who's interested on Quantitative Finance?

* Investment banks and hedge funds

* High skilled investors in general

* Academics

How Quantitative Finance affects us, Java developers?

The world of Quantitative Finance is very rewarding, offering very good salaries. Most companies
opt for C++ but Java is slowly gaining more market share.

Companies which adopting Java are Goldman Sachs and CMC Markets, CS Group, to mention a
few.

Background

JQuantLib is based on QuantLib (implemented in C++)

QuantLib

e Started in 2000
e ~35 developers

o MSVC++/ GCC

® Production quality v0.9.7 (November 18th, 2008)

e Near 2m lines of code

e Ported several languages (C# (QLNet), Python, Perl,
Ruby...)

===Background===

JQuantLib is based on QuantLib, which is written in C++.

Some words about QuantLib

* |t started in 2000;

* [t has more than 35 contributors and near 2 million lines of code;

* Current v0.9.7 (Nov/2008) is a near-production quality product;

* It compiles under MSVC and GCC;

* |t has ports to several languages. Most ports are based on SWIG wrappers. There are some
initiatives to translate souce code to other languages, such as C#;

More about how to mimic templates in Java will be explored later.

The Need of JQuantLib

QuantLib misses integration with Java

Evaluation of QuantLib showed

e SWIG wrappers: inconvenient, incomplete, wrong
@ JNI: inconvenient, complex, counterproductive
o SWIG/JNI: Difficult customization / extensiblity

Alternatives

® Integration via J2EE and CORBA containers
® Translate QuantLib to Java : ~1300 classes

===The Need of JQuantLib===
During 3 months QuantLib was evaluated from the perspective of integration with a Java front-end.

* We discovered that SWIG wrappers offered by QuantLib are inconvenient, incomplete and
sometimes even wrong;

* An alternative would be to use JNI as integration technology. This idea was abandoned because
JNI is inconvenient, complex, error prone, slow and counterproductive.

Then some alternatives were evaluated:

* Integrate Java and C++ worlds via J2EE and CORBA containers. This idea was quickly
abandoned due to exagerated complexity and performance concerns.

* Translate QuantLib to Java, which involves migrating around 1300 classes of near 2 million lines
of code.

We opted by the 2nd approach, because of the results we aim to obtain, in spite it is certainly a
very challenging task.

Objectives

JQuantLib aims...

® Translate QuantLib, which is written in C++
e Offer syntax and semantics Java developers expect but
keeping JQuantLib API as close as possible to QuantLib API

® Be exceptionally well coded, accurate and well documented
® Take advantage of features Java can offer

===Qbjectives===
JQuantLib aims to:

* Translate QuantLib to 100% pure Java;

* Offer syntax and semantics Java developers expect but keeping JQuantLib API as close as
possible to QuantLib API;

* Be exceptionally well coded, accurate and well documented,;

* Take advantage of features Java can offer as a language, as a execution environment and as a
platform in general.

Challenges

QuantLib (C++)

® \Very complex object model (example: Monte Carlo)
® Abuse of templates and other idioms

Other challenges

® Maximum accuracy

® \ery strong type checking at compile time
® Relative bad performance of Java

e | atency due to Objects and GC

===Challenges===
QuantLib (C++) is very well designed and implemented but it imposes some challenges:

* The object model is over complicated
* Abuse of templates, which are difficult to mimic properly in Java
* Use of some C++ idioms, specially templates which can be difficult to translate to Java

In addition, there are other challenges:

* Obtain maximum accurary without imposing performance penalties

* Obtain very strong type checking at compile time in order to avoid performance penalties and run
time errors

* Relative bad performance when comparing to C++

* Performance penalties imposed by Objects and operation of GC

Current Status - Jan/2009

e Started September 2007

e Coding started January 2008

® ~10 active developer

® First release in June 2008

® 40% of classes translated (January 2009)

===Current status of JQuantLib===

This is the status as for sep/2008:

* Started on sep/2007

* Coding started on jan/2008

* About 10 active developers;

* First released in jun/2008

* 30% of translation task by number of classes

Features

From QuantLib

e Day counters, calendars, IMM

® Term structures, yield structures

® [nstruments: stocks, options, bonds, swaps, etc

® Methods: Black-Scholes, binomial, LMM, MonteCarlo,
low-discrepancy numbers, etc

JQuantLib specific pianneq)

® OSGi support
® Support for parallelism (Parallel Colt,

http://piotr.wendykier.googlepages.com/parallelcolt)

o Grid enabled

===Features===

Most features of JQuantLib are simply borrowed from QuantLib, such as

* Financial instruments: stocks, options, futures, future options, swaps, swap options, bonds,
currencies, etc

* Methods: Black-Scholes, Binomial, Monte Carlo, low-discrepancy numbers (Sobol) etc

* and much more

Other features are specific to JQuantLib

* OSGi support is important for providing high availability and configuration flexibility in production
* Support for parallelism is critical for scalability and performance. JQuantLib aims to provide
parallelism via support libraries which support parallelism, including mathematical libraries. Also,
being thread-safe, JQuantLib can provide parallelism itself

* JQuantLib can also deliver tasks to be run on other nodes of a grid. Doing so, more scalability
and more paralellism can be obtained.

Back to OSGi, functionalities can be selected and adapted to underlying infrastructure by the
choose of adequate modules (called OSGi bundles). Example: The user can use what
implementation of a randomizer he or she wants to use without the need of restarting the system.

Architecture

® Build Environment

® Quality Assurance

® Documentation

® Accuracy

® Strong Type Checking
® Performance

===Archictecture===

Here we will expose how JQuantLib addresses requirements and objectives. Also, we will present
some details about build tools, etc.

This is our agenda:

* Build Environment

* Quality Assurance

* Documentation

* Accuracy

* Strong Type Checking
* Performance

In this presentation we will explore important aspects taken into account aiming to reach features
we need whilst aiming to obtain the best performance as possible.

In the world of quantitative finance, performance is a critical factor of success. Other critical factors
are correctness and accuracy.

Build Environment

® Linux

e Javab

® Eclipse

e KDE

e Umbrello
o SVN

® Maven

e Continuum
® Archiva

====Build Environment====

A choice for open source solutions, flexibility, automation and integration between all the
components involved defined the prefered platform and tools.

* Linux because it's open and free;

* Javab because it provides additional functionalities over Javab;

* KDE because it runs on Linux, BSD, Windows and Mac.

* Eclipse because it's a de-facto standard and provides an integrated OSGi container;

* Umbrello is a good enough UML modelling tool which runs on KDE and has a version for
Windows;

* Source code management: Subversion (SVN) because it is the natural sucessor of CVS and it is
mature enough;

* Build tool: Maven because it provides dependency management integrated with ordinary build
tasks. It can also run Ant tasks if needed.

* Continuous integration: Continuum because it integrates seemlessly with Maven;

* Artifact management: Archiva because it integrates well with Continuum.

Quality Assurance

e JUnit4

e PMD

® FindBugs
® EclEmma
® Cobertura
® Mantis

====Quality Assurance====

We use these tools:

* JUnit4 and Cobertura are integrated with Maven in order to collect results of test cases. Reports
generated by Cobertura can be seen in the website generated by Maven

* PMD and FindBugs are also integrated with Maven and generate reports containing violation to
coding standards, bad practices and so on. FindBugs is also integrated with Eclipse as a plugin

* EclEmma provides code coverage integrated with Eclipse which is extremelly helpful for testing
purposes

* Macker has a plugin for Maven which can be used to look for regular expressions we'd like to
avoid in the source code. A good example is that we'd like to erradicate the use of
java.lang.Double in order to avoid autoboxing.

Correctness

Strong type checking

® Enumerations
® Generic types
® Annotation on Java types (JSR-308)

Accuracy

® Floating point rounding errors

====Correctness====

JQuantLib must be correct.

The compiler is our best friend on this difficult task.

By using idioms like enumerations, generic types and annotations on types we can help the
compiler to help us. We will discuss this topic further on.

Correctness implies that calculations must be correct and, in particular, must match results
provided by QuantLib(C++). We will discuss this topic soon.

Annotations on Java types

double calc(double rate, double year) {
return Math.exp(1+rate,year);

}

double rate = 0.45;
double year = 0.5;

double resultl = calc(rate, year);
double result2 = calc(year, rate); // Wrong, not recognized by the compiler

Need for semantic checking

e Erradicate errors at compile time
® Test cases are not 100% guaranteed :(

C++

typedef double Rate;

typedef double Year;

double calc(Rate rate, Year year);

====Annotations on Java types====

In this slide we will talk about how very strong type checking can be obtained using annotations.
First of all, lets examine what is the need for very strong type checking.

Consider the piece of code you can see on top:

double calc(double rate, double year) {
return Math.exp(1+rate,year);

double rate = 0.45;
double year = 0.5;

double resultl = calc(rate, year);
double result2 = calc(year, rate);

It shows a situation where 2 double variables where swaped because there's no semantic
enforcement at compile time of what the parameters are and which variables should be accept or
reject for each parameter.

About test cases

In spite test cases can point out most of these situations, test cases which pass "do not mean"
that our code is "certainly right": they only "mean” that our code is "not certainly wrong".

""What C++ provides

Let's examine the piece of code on the botton.

typedef double Rate;

typedef double Year;

double calc(Rate rate, Year year);

Notice that typedefs improves how code can be understood but it does not prevent the compiler

for accepting a Rate where an Year is expected. This is because both Rate and Year are simply
double variables, in fact.

JSR-308

private Double calc(@Rate double rate, @ Time double time) {
return new Double (Mathc.exp(1+rate, time));

}

@Rate double rate = 0.45;
@Time double time = 0.5;

/I This call will pass
Double resultl = calc(rate, time);

/I This call can give us a compiler error
Double result2 = calc(time, rate);

® Available in JDK7 (target date for JDK7: Early 2010)
® Annotations wherever a type is accepted
® Annotation processor plugged into compilation phase

Link

http://groups.csail.mit.edu/pag/jsr308/

====JSR-308====
How JQuantLib addresses this issue:
Going straight to the solution, we are using a very interesting feature of JDK7 known as JSR-308.

Let's see the example:

private Double calc(@Rate double rate, @ Time double time) {
return new Double(Math.exp(1+rate, time));

}

@Rate double rate = 0.45;
@Time double time = 0.5;

/[This call pass
Double resultl = calc(rate, time);

/I This call *can* give us a compiler error
Double result2 = calc(time, rate);

It consists of allowing annotations wherever a type is allowed. Annotations add semantic meaning

to types. By the use of annotation processors, which can be pluged into javac (Java Compiler) it is
possible to provoke compilation erros.

JSR-308 allows Java to provide even stronger and more flexible type checkings than C++.

Accuracy

System.out.printin(0.1 + 0.1 + 0.1);

0.30000000000000004

Requirements

® As accurate as QuantLib (C++)
® As lightweight as possible
® As fast as possible

Solution

® Primitive types
® Calculate epsilon when needed

===Accuracy===

On the right top we can see the simplest example of mathematical inaccuracy due to floating point
rounding errors:

This kind of error happens not due to the programming language but due to the way computers
represent floating point data.

It's good to mention that more operations are done with innacurate data the bigger the error
becomes (example: Monte Carlo simulations).

"'Requirements

* To be as accurate as QuantLib is;

* To be as lightweight as possible;

* To be as fast as possible, in particular: avoid impacts of object allocation and garbage collection.
"'Solution

JQuantLib takes the same approach as QuantLib. It consist of calculation of epsilon after a

sequence of mathematical operations which gives us the order of magnitude of the error.
No Objects are used, only primitive types.

Documentation

Requirements
1. Replace doxygen

Solution

1. UMLGraph
2. LaTeXtaglet

Links
http://www.umlgraph.org/

Tool for testing Latex formulas: Laeged

====Documentation====

""What are the requirements?

We decided to mimic original QuantLib documentation, which is generated by doxygen containing
UML diagrams and mathematical formulas in addition to ordinary code documentation.
"'JQuantLib approach is

1. UMLGraph http://www.umlgraph.org/ is tool written in Java which can be easily integrated with
javadoc and produces various UML diagrams. In particular, we can say that the default
configuration of UMLGraph is what we need regarding UML diagrams.

2. Embed mathematical formulas in Javadocs via taglets.

We modified a tool called LaTeXtaglet in order to better integrate with Linux as it had Windows-
dependent code.

Tool for testing Latex formulas: Laeged

"'Links
[http://www.umligraph.org/ UMLGraph]

[http://lwww.jquantlib.org/index.php/Building_JQuantLib Building JQuantLib]

Performance

® Critical requirement
® Needed for low latency
® Needed for scalability

Topics

® Comparison with C++
® Numbers and Objects
® Collections

® Math Packages

® Parallelism

® JVM and gc

® Profiling

===Performance===

One of the most important requirements for a financial package is high performance. It guarantees
that results are calculated on time and it potentially enables applications to scale.

Performance is a difficult matter and comparisons are subjective in general. Anyway, we will try to
show that Java is ready for serious high performance, low latency financial applications.

We will talk about some techniques, tools and products which can help us to get most of language,
JVM and hardware.

These are the items we will cover:

* Comparison with C++
* Numbers and Objects
* Collections

* Math Packages

* Parallelism

*JVM and gc

* Profiling

Comparison with C++

Benchmarks in DDJ (Java 5)

® 32bit integer arithmetic: as fast as

® 64bit double arithmetic: as fast as

e sort algorithms: 50% slower

e® list operations: 2x slower

® matrix operations: 2x to 3x slower

® nested loops: 2x slower

e trigonometric functions: deadly slow!

http://www.jquantlib.org/index.php/DesignPerformance

====Comparison with C++====

The results we present here were taken from Dr. Dobbs Jounal and compares C++ with Java5.
We have to remember that performance comparisons are always subjective but these figures can
help us build an overall scenario.

* 32 and 64 bit arithmetic present roughly the same performance. These are the most important
operations from JQuantLib point of view because they are the most common mathematical
operations we will perform.

* sort algorithms, list operations and matrix operations may be 2 to 3 times slower in Java. Most of
slowness is due to object creation, garbage collection and autoboxing. This is a "region in our
domain" which can be potentially improved in Java.

* Trigonometric functions are deadly slow, in general.

Actually, these results may vary a lot depending on JVM implementation and hardware platform.

The link below ...

http://www.jquantlib.org/index.php/DesignPerformance

. contains links to this study taken from Dr. Dobbs Jounal and also some other interesting links.

Another point to mention is that Java does not provide "unsigned" integer arithmetic. It only

provides "signed" integer arithmetic. In inspite this issue can be circunvented in most situations,
there are certain situation where you will have to perform additional operations in order to obtain
the correct result. It obviously have impacts on performance. This is not only lack of Java, but a

lack in JVM: it means that Groovy, Scala and all other JVM based languages will present the same
issue.

Collections

Issues
® Not optimised for high performance systems
® Expansive object management and reference

Alternatives
® Arrays of primitive types
® Optimised JCF implementation

fastutil Listlist = DoubleArrayList(): // backed by an array of doubles
list.add(1.0); // autoboxing :: list.add(new Double(1.0));
(DoubleArrayList)list.add(2.0); // no autoboxing :)
double d = (DoubleArrayList)list.getDouble(0); // no autoboxing

http://fastutil.dsi.unimi.it/

====Collections====

Java Collections Framework is a collection of data structures which are certainly very useful. But
standard JCF is not optimised for high performance systems. Every element of a collecion is an
object which demands to be created, referenced and released at collection destruction. A large
collection which envolves several operations may be too expansive from the performance point of
view.

As an alternative, we can use regular arrays of primitive types instead of Collections. This
alternative can be good on several circunstances but certainly does not offer the flexibility JCF
provides.

JQuantLib uses fastutil, which is an implementations of JCF interfaces backed on arrays of
primitive types. From the user point of view, it's pretty much JCF but there are certain methods
intended to avoid autoboxing.

The snippet of code shows the usage of DoubleArrayList, which is a List but backed by an array of
primitive type doubles, not class Double, | mean. FastUtil manages the growth of this array, as you
would expect.

The second line does not have anything different from what you would expect but it inserts an
object of type Double which involves autoboxing.

The third line shows and extension to the well known List interface. It intends to offer you the
possibility of retrieving a primitive type double directly from the underlying array of primitive
doubles. No autoboxing.

List list = DoubleArrayList(); // backed by an array of doubles
list.add(1.0); // autoboxing :: list.add(new Double(1.0))
(DoubleArrayList)list.add(2.0); // no autoboxing

double d = (DoubleArrayList)list.getDouble(0);

Due to these improvements, only a few objects are created and no need for autoboxing.

For more info about fastutil, please have a look at
http://fastutil.dsi.unimi.it/

Math Packages

Colt was developed at CERN

e Stable and Reliable

® Optimised / High performance
® Production grade

® \Vector and Matrix operations
® Linear Algebra

® Statistical methods

® L ast release: v1.2, Sept/04

http://acs.Ibl.gov/~hoschek/colt/

====Math Packages====

JQuantLib uses external libraries wherever possible.

In the specific case of mathematical and statistical stuff, JQuantLib uses Colt, which was
developed at CERN and is used on high energy phisics problems. Colt is optimised to be used in

production, solving problems which involve thousands or even millions data points.

There are other packages around but Colt was selected by its completeness and high
performance.

For more information about Colt, please have a look at the link shown below:
http://acs/Ibl.gov/~hoschek/colt/

Parallelism

Levels of parallelism

@ JQuantLib is thread-safe
e Parallel Colt takes advantage of multiple CPUs
® Customized JVMs

Parallel Colt

® The natural evolution for Colt

® Important factor for selecting Colt

e Still in development but no major issues
® Last release: v0.6.1, Dec. 2008

http://piotr.wendykier.googlepages.com/parallelcolt

====Paralellism====

Paralellism is a key factor which enables applications to perform well, taking full advantage of
hardware resources, multiprocessors or even grid environments.

Parallelism can be obtained in several ways:

* Application level: JQuantLlIb is designed to be thread-safe, which potentially enables it to solve
several different problems at the same time. No rocket science here: only what you would expect.

*JVM level: A customised JVM can take advantage of special hardware features in order to
minimize gc latency and other bottlenecks. We will talk more about this item soon.

* Library level: Actually JQuantLib will use Parallel Colt and not Colt.

Parallel Colt is a a parallelised version of Colt, which takes advantage of multiprocessing. The
existence of a parallel version of Colt was another reason for selecting Colt at first place.

In fact, JQuantLib was initially written for using Colt and focus changed to Parallel Colt by the time.
Parallel Colt keeps compatibility with Colt APIs wherever possible. We plan to keep compatibility

with both via proxies.

For more information about Parallel Colt, please have a look at

JVM and gc

JVMs need to be optimised for specific hardware

Some info about Azul appliances

® Getting rid of the JVM scaling issues

e Customised JVM

® Up to 54 cores per CPU

e Up to 16 processors, 860 cores, 768Gb

® Grid enabled: can scale even more

e Hardware assisted GC

e Hardware assisted Java locking

® Performance increase: order of hundred times

http://www.azulsystems.com

====JVM and gc====

JVMs need to be optimised for specific hardware in order to perform well.

A good example is how IBM JVM support BigDecimal on AIX boxes.

Another good example is Azul Systems appliances.

I'd like to mention something about Azul appliances as they are certainly very interesting for those
willing to deploy applications written in Java onto critical, low latency environments.

* These appliances can have up to 54 cores per processors and reach 860 cores, 768Gb memory
in a single box.

* A customized JVM offers low latency due to hardware assisted garbage collector and hardware
assisted Java locking.

For more information about Azul Systems, please have a look at
http://www.azulsystems.com

Profiling

e No memory profiling yet
e Performance tests are still incipient

====Profiling====

We cannot say we have enough focus on performance at the moment because our main focus is
on translation. We have only some incipient performance tests.

In the following chart we compare performance of European Options calculation between
QuantLib/C++ and JQuantLib/Java implementations.

In spite JQuantLib shows better performance... which is excellent!... JQuantLib is still in its its
childhood and we cannot say anything about performance yet.

JQuantLib
mean =52.2 :: stddev=72.4

QuantLib
mean = 68.8 :: stddev=7.0

We can see that stddev from JQuantLib is much higher, mainly during start-up. Also, performance
alternates highs and lows, for unknown reasons at this time.

Next releases

3rd release

e Date: 12th February 2009 / Eclipse Banking Day, London

® American Options with Finite Differences

® American Options with Integral Engine

® Asian Options

® Translation and tests of all 35 calendar classes , from 2004 to 2012

4th release - tbd
® Monte Carlo method

® Sobol (Quasi Monte Carlo, low-discrepancy numbers)
® Bonds

===Next Releases===

The 2nd Release , which is planned to happen late October/2008 will have support for American
Options and Finite differences methods.

The 3rd Release, which is planned to happen late December/2008 will support Monte Carlo
simulation and bonds.

Future

Pluggable OSGi blundles

® Purpose specific implementations
® Hot swap
® 24X7x365

Marketplace

® Products and services show case
e Cooperation

® Forum, wiki

® Room for inovation

Thanks :)

http://www.jquantlib.org/

Wer mochte mitarbeiten?

Thanks!

Please have a look at our website tomorrow for obtaining presentation notes.

