

==JQuantLib==

JQuantLib is a Quantitative Finance framework written in Java.

JQuantLib
A framework for Quantitative Finance written in Java

===Quantitative Finance===

But...

What is Quantitative Finace?

Other wordings:

* Mathematical Finance

* Financial Engineering

* Finance Computing

* ...

It's something which...

* Allows price valuation of financial instruments, such as stocks, options, bonds, futures, etc;

* Involves complex mathematics and statistics like linear algebra, interpolations, extrapolations,

probability distributions, stochastic calculus, etc. Some calculations are CPU intensive and may

consume a lot of resources, like numerical integrations and big matrix operations, to mention a

few.

How Quantitative Finance is used?

It can be used to...

Quantitative Finance

What is Quantitative Finance?

Valuation of financial instruments
Involves complex mathematics and statistics

How it is used?

Model trading strategies
Determine optimal investment portfolios
Testing of new models and strategies
Risk valuation and management

* Model trading strategies and determine optimal investment portfolios needed to forecast return

on investment;

* Risk Valuation risk associated to investments

* Test new products, models and strategies

Who's interested on Quantitative Finance?

* Investment banks and hedge funds

* High skilled investors in general

* Academics

How Quantitative Finance affects us, Java developers?

The world of Quantitative Finance is very rewarding, offering very good salaries. Most companies

opt for C++ but Java is slowly gaining more market share.

Companies which adopting Java are Goldman Sachs and CMC Markets, CS Group, to mention a

few.

===Background===

JQuantLib is based on QuantLib, which is written in C++.

Some words about QuantLib

* It started in 2000;

* It has more than 35 contributors and near 2 million lines of code;

* Current v0.9.7 (Nov/2008) is a near-production quality product;

* It compiles under MSVC and GCC;

* It has ports to several languages. Most ports are based on SWIG wrappers. There are some

initiatives to translate souce code to other languages, such as C#;

More about how to mimic templates in Java will be explored later.

Background
JQuantLib is based on QuantLib (implemented in C++)

Started in 2000
~35 developers
MSVC++ / GCC
Production quality v0.9.7 (November 18th, 2008)
Near 2m lines of code
Ported several languages (C# (QLNet), Python, Perl,
Ruby...)

QuantLib

===The Need of JQuantLib===

During 3 months QuantLib was evaluated from the perspective of integration with a Java front-end.

* We discovered that SWIG wrappers offered by QuantLib are inconvenient, incomplete and

sometimes even wrong;

* An alternative would be to use JNI as integration technology. This idea was abandoned because

JNI is inconvenient, complex, error prone, slow and counterproductive.

Then some alternatives were evaluated:

* Integrate Java and C++ worlds via J2EE and CORBA containers. This idea was quickly

abandoned due to exagerated complexity and performance concerns.

* Translate QuantLib to Java, which involves migrating around 1300 classes of near 2 million lines

of code.

We opted by the 2nd approach, because of the results we aim to obtain, in spite it is certainly a

very challenging task.

The Need of JQuantLib

SWIG wrappers: inconvenient, incomplete, wrong
JNI: inconvenient, complex, counterproductive
SWIG/JNI: Difficult customization / extensiblity

Evaluation of QuantLib showed

Alternatives
 Integration via J2EE and CORBA containers

Translate QuantLib to Java : ~1300 classes

QuantLib misses integration with Java

===Objectives===

JQuantLib aims to:

* Translate QuantLib to 100% pure Java;

* Offer syntax and semantics Java developers expect but keeping JQuantLib API as close as

possible to QuantLib API;

* Be exceptionally well coded, accurate and well documented;

* Take advantage of features Java can offer as a language, as a execution environment and as a

platform in general.

Objectives

Translate QuantLib, which is written in C++
Offer syntax and semantics Java developers expect but
keeping JQuantLib API as close as possible to QuantLib API

Be exceptionally well coded, accurate and well documented

Take advantage of features Java can offer

JQuantLib aims...

===Challenges===

QuantLib (C++) is very well designed and implemented but it imposes some challenges:

* The object model is over complicated

* Abuse of templates, which are difficult to mimic properly in Java

* Use of some C++ idioms, specially templates which can be difficult to translate to Java

In addition, there are other challenges:

* Obtain maximum accurary without imposing performance penalties

* Obtain very strong type checking at compile time in order to avoid performance penalties and run

time errors

* Relative bad performance when comparing to C++

* Performance penalties imposed by Objects and operation of GC

Challenges

Very complex object model (example: Monte Carlo)
Abuse of templates and other idioms

QuantLib (C++)

Other challenges

Maximum accuracy
Very strong type checking at compile time
Relative bad performance of Java
Latency due to Objects and GC

===Current status of JQuantLib===

This is the status as for sep/2008:

* Started on sep/2007

* Coding started on jan/2008

* About 10 active developers;

* First released in jun/2008

* 30% of translation task by number of classes

 Current Status - Jan/2009

Started September 2007
Coding started January 2008
~10 active developer
First release in June 2008
40% of classes translated (January 2009)

===Features===

Most features of JQuantLib are simply borrowed from QuantLib, such as

* Financial instruments: stocks, options, futures, future options, swaps, swap options, bonds,

currencies, etc

* Methods: Black-Scholes, Binomial, Monte Carlo, low-discrepancy numbers (Sobol) etc

* and much more

Other features are specific to JQuantLib

* OSGi support is important for providing high availability and configuration flexibility in production

* Support for parallelism is critical for scalability and performance. JQuantLib aims to provide

parallelism via support libraries which support parallelism, including mathematical libraries. Also,

being thread-safe, JQuantLib can provide parallelism itself

* JQuantLib can also deliver tasks to be run on other nodes of a grid. Doing so, more scalability

and more paralellism can be obtained.

Back to OSGi, functionalities can be selected and adapted to underlying infrastructure by the

choose of adequate modules (called OSGi bundles). Example: The user can use what

implementation of a randomizer he or she wants to use without the need of restarting the system.

Features

Day counters, calendars, IMM
Term structures, yield structures
Instruments: stocks, options, bonds, swaps, etc
Methods: Black-Scholes, binomial, LMM, MonteCarlo,
low-discrepancy numbers, etc

From QuantLib

JQuantLib specific (planned)

OSGi support
Support for parallelism (Parallel Colt,
http://piotr.wendykier.googlepages.com/parallelcolt)
Grid enabled

===Archictecture===

Here we will expose how JQuantLib addresses requirements and objectives. Also, we will present

some details about build tools, etc.

This is our agenda:

* Build Environment

* Quality Assurance

* Documentation

* Accuracy

* Strong Type Checking

* Performance

In this presentation we will explore important aspects taken into account aiming to reach features

we need whilst aiming to obtain the best performance as possible.

In the world of quantitative finance, performance is a critical factor of success. Other critical factors

are correctness and accuracy.

Architecture

Build Environment
Quality Assurance
Documentation
Accuracy
Strong Type Checking
Performance

====Build Environment====

A choice for open source solutions, flexibility, automation and integration between all the

components involved defined the prefered platform and tools.

* Linux because it's open and free;

* Java6 because it provides additional functionalities over Java5;

* KDE because it runs on Linux, BSD, Windows and Mac.

* Eclipse because it's a de-facto standard and provides an integrated OSGi container;

* Umbrello is a good enough UML modelling tool which runs on KDE and has a version for

Windows;

* Source code management: Subversion (SVN) because it is the natural sucessor of CVS and it is

mature enough;

* Build tool: Maven because it provides dependency management integrated with ordinary build

tasks. It can also run Ant tasks if needed.

* Continuous integration: Continuum because it integrates seemlessly with Maven;

Build Environment
Linux
Java6
Eclipse
KDE
Umbrello
SVN
Maven
Continuum
Archiva

* Artifact management: Archiva because it integrates well with Continuum.

====Quality Assurance====

We use these tools:

* JUnit4 and Cobertura are integrated with Maven in order to collect results of test cases. Reports

generated by Cobertura can be seen in the website generated by Maven

* PMD and FindBugs are also integrated with Maven and generate reports containing violation to

coding standards, bad practices and so on. FindBugs is also integrated with Eclipse as a plugin

* EclEmma provides code coverage integrated with Eclipse which is extremelly helpful for testing

purposes

* Macker has a plugin for Maven which can be used to look for regular expressions we'd like to

avoid in the source code. A good example is that we'd like to erradicate the use of

java.lang.Double in order to avoid autoboxing.

Quality Assurance
JUnit4
PMD
FindBugs
EclEmma
Cobertura
Mantis

====Correctness====

JQuantLib must be correct.

The compiler is our best friend on this difficult task.

By using idioms like enumerations, generic types and annotations on types we can help the

compiler to help us. We will discuss this topic further on.

Correctness implies that calculations must be correct and, in particular, must match results

provided by QuantLib(C++). We will discuss this topic soon.

Correctness

Strong type checking

Enumerations
Generic types
Annotation on Java types (JSR-308)

Accuracy

Floating point rounding errors

====Annotations on Java types====

In this slide we will talk about how very strong type checking can be obtained using annotations.

First of all, lets examine what is the need for very strong type checking.

Consider the piece of code you can see on top:

 double calc(double rate, double year) {

 return Math.exp(1+rate,year);

 }

 double rate = 0.45;

 double year = 0.5;

 double result1 = calc(rate, year);

 double result2 = calc(year, rate);

It shows a situation where 2 double variables where swaped because there's no semantic

enforcement at compile time of what the parameters are and which variables should be accept or

reject for each parameter.

Annotations on Java types
double calc(double rate, double year) {
return Math.exp(1+rate,year);
}

double rate = 0.45;
double year = 0.5;

double result1 = calc(rate, year);
double result2 = calc(year, rate); // Wrong, not recognized by the compiler

C++
typedef double Rate;
typedef double Year;
double calc(Rate rate, Year year);

Need for semantic checking
 Erradicate errors at compile time

Test cases are not 100% guaranteed :(

'''About test cases

In spite test cases can point out most of these situations, test cases which pass ''do not mean''

that our code is ''certainly right'': they only ''mean'' that our code is ''not certainly wrong''.

'''What C++ provides

Let's examine the piece of code on the botton.

 typedef double Rate;

 typedef double Year;

 double calc(Rate rate, Year year);

Notice that typedefs improves how code can be understood but it does not prevent the compiler

for accepting a Rate where an Year is expected. This is because both Rate and Year are simply

double variables, in fact.

====JSR-308====

How JQuantLib addresses this issue:

Going straight to the solution, we are using a very interesting feature of JDK7 known as JSR-308.

Let's see the example:

 private Double calc(@Rate double rate, @Time double time) {

 return new Double(Math.exp(1+rate, time));

 }

 @Rate double rate = 0.45;

 @Time double time = 0.5;

 // This call pass

 Double result1 = calc(rate, time);

 // This call *can* give us a compiler error

 Double result2 = calc(time, rate);

It consists of allowing annotations wherever a type is allowed. Annotations add semantic meaning

JSR-308
private Double calc(@Rate double rate, @Time double time) {
return new Double (Mathc.exp(1+rate, time));
}

@Rate double rate = 0.45;
@Time double time = 0.5;

// This call will pass
Double result1 = calc(rate, time);

// This call can give us a compiler error
Double result2 = calc(time, rate);

Available in JDK7 (target date for JDK7: Early 2010)
Annotations wherever a type is accepted
Annotation processor plugged into compilation phase

http://groups.csail.mit.edu/pag/jsr308/

Link

to types. By the use of annotation processors, which can be pluged into javac (Java Compiler) it is

possible to provoke compilation erros.

JSR-308 allows Java to provide even stronger and more flexible type checkings than C++.

===Accuracy===

On the right top we can see the simplest example of mathematical inaccuracy due to floating point

rounding errors:

This kind of error happens not due to the programming language but due to the way computers

represent floating point data.

It's good to mention that more operations are done with innacurate data the bigger the error

becomes (example: Monte Carlo simulations).

'''Requirements

* To be as accurate as QuantLib is;

* To be as lightweight as possible;

* To be as fast as possible, in particular: avoid impacts of object allocation and garbage collection.

'''Solution

JQuantLib takes the same approach as QuantLib. It consist of calculation of epsilon after a

sequence of mathematical operations which gives us the order of magnitude of the error.

No Objects are used, only primitive types.

Accuracy
System.out.println(0.1 + 0.1 + 0.1);

0.30000000000000004

Requirements

Primitive types
Calculate epsilon when needed

As accurate as QuantLib (C++)
As lightweight as possible
As fast as possible

Solution

====Documentation====

'''What are the requirements?

We decided to mimic original QuantLib documentation, which is generated by doxygen containing

UML diagrams and mathematical formulas in addition to ordinary code documentation.

'''JQuantLib approach is

1. UMLGraph http://www.umlgraph.org/ is tool written in Java which can be easily integrated with

javadoc and produces various UML diagrams. In particular, we can say that the default

configuration of UMLGraph is what we need regarding UML diagrams.

2. Embed mathematical formulas in Javadocs via taglets.

We modified a tool called LaTeXtaglet in order to better integrate with Linux as it had Windows-

dependent code.

Tool for testing Latex formulas: Laeqed

'''Links

[http://www.umlgraph.org/ UMLGraph]

Documentation

Requirements
 1. Replace doxygen

Solution

1. UMLGraph
2. LaTeXtaglet

Links
 http://www.umlgraph.org/

 Tool for testing Latex formulas: Laeqed

[http://www.jquantlib.org/index.php/Building_JQuantLib Building JQuantLib]

===Performance===

One of the most important requirements for a financial package is high performance. It guarantees

that results are calculated on time and it potentially enables applications to scale.

Performance is a difficult matter and comparisons are subjective in general. Anyway, we will try to

show that Java is ready for serious high performance, low latency financial applications.

We will talk about some techniques, tools and products which can help us to get most of language,

JVM and hardware.

These are the items we will cover:

* Comparison with C++

* Numbers and Objects

* Collections

* Math Packages

* Parallelism

* JVM and gc

* Profiling

Performance

Comparison with C++
Numbers and Objects
Collections
Math Packages
Parallelism
JVM and gc
Profiling

Topics

Critical requirement
Needed for low latency
Needed for scalability

====Comparison with C++====

The results we present here were taken from Dr. Dobbs Jounal and compares C++ with Java5.

We have to remember that performance comparisons are always subjective but these figures can

help us build an overall scenario.

* 32 and 64 bit arithmetic present roughly the same performance. These are the most important

operations from JQuantLib point of view because they are the most common mathematical

operations we will perform.

* sort algorithms, list operations and matrix operations may be 2 to 3 times slower in Java. Most of

slowness is due to object creation, garbage collection and autoboxing. This is a "region in our

domain" which can be potentially improved in Java.

* Trigonometric functions are deadly slow, in general.

Actually, these results may vary a lot depending on JVM implementation and hardware platform.

The link below ...

http://www.jquantlib.org/index.php/DesignPerformance

Comparison with C++

http://www.jquantlib.org/index.php/DesignPerformance

32bit integer arithmetic: as fast as
64bit double arithmetic: as fast as
sort algorithms: 50% slower
list operations: 2x slower
matrix operations: 2x to 3x slower
nested loops: 2x slower
trigonometric functions: deadly slow!

Benchmarks in DDJ (Java 5)

... contains links to this study taken from Dr. Dobbs Jounal and also some other interesting links.

Another point to mention is that Java does not provide ''unsigned'' integer arithmetic. It only

provides ''signed'' integer arithmetic. In inspite this issue can be circunvented in most situations,

there are certain situation where you will have to perform additional operations in order to obtain

the correct result. It obviously have impacts on performance. This is not only lack of Java, but a

lack in JVM: it means that Groovy, Scala and all other JVM based languages will present the same

issue.

====Collections====

Java Collections Framework is a collection of data structures which are certainly very useful. But

standard JCF is not optimised for high performance systems. Every element of a collecion is an

object which demands to be created, referenced and released at collection destruction. A large

collection which envolves several operations may be too expansive from the performance point of

view.

As an alternative, we can use regular arrays of primitive types instead of Collections. This

alternative can be good on several circunstances but certainly does not offer the flexibility JCF

provides.

JQuantLib uses fastutil, which is an implementations of JCF interfaces backed on arrays of

primitive types. From the user point of view, it's pretty much JCF but there are certain methods

intended to avoid autoboxing.

The snippet of code shows the usage of DoubleArrayList, which is a List but backed by an array of

primitive type doubles, not class Double, I mean. FastUtil manages the growth of this array, as you

would expect.

The second line does not have anything different from what you would expect but it inserts an

object of type Double which involves autoboxing.

Collections
Issues
 Not optimised for high performance systems

Expansive object management and reference

Alternatives
 Arrays of primitive types

Optimised JCF implementation

List list = DoubleArrayList(); // backed by an array of doubles
list.add(1.0); // autoboxing :: list.add(new Double(1.0));
(DoubleArrayList)list.add(2.0); // no autoboxing :)
double d = (DoubleArrayList)list.getDouble(0); // no autoboxing

http://fastutil.dsi.unimi.it/

fastutil

The third line shows and extension to the well known List interface. It intends to offer you the

possibility of retrieving a primitive type double directly from the underlying array of primitive

doubles. No autoboxing.

List list = DoubleArrayList(); // backed by an array of doubles

list.add(1.0); // autoboxing :: list.add(new Double(1.0))

(DoubleArrayList)list.add(2.0); // no autoboxing

double d = (DoubleArrayList)list.getDouble(0);

Due to these improvements, only a few objects are created and no need for autoboxing.

For more info about fastutil, please have a look at

http://fastutil.dsi.unimi.it/

====Math Packages====

JQuantLib uses external libraries wherever possible.

In the specific case of mathematical and statistical stuff, JQuantLib uses Colt, which was

developed at CERN and is used on high energy phisics problems. Colt is optimised to be used in

production, solving problems which involve thousands or even millions data points.

There are other packages around but Colt was selected by its completeness and high

performance.

For more information about Colt, please have a look at the link shown below:

http://acs/lbl.gov/~hoschek/colt/

Math Packages

Colt was developed at CERN

Stable and Reliable
Optimised / High performance
Production grade
Vector and Matrix operations
Linear Algebra
Statistical methods
Last release: v1.2, Sept/04

http://acs.lbl.gov/~hoschek/colt/

====Paralellism====

Paralellism is a key factor which enables applications to perform well, taking full advantage of

hardware resources, multiprocessors or even grid environments.

Parallelism can be obtained in several ways:

* Application level: JQuantLIb is designed to be thread-safe, which potentially enables it to solve

several different problems at the same time. No rocket science here: only what you would expect.

*JVM level: A customised JVM can take advantage of special hardware features in order to

minimize gc latency and other bottlenecks. We will talk more about this item soon.

* Library level: Actually JQuantLib will use Parallel Colt and not Colt.

Parallel Colt is a a parallelised version of Colt, which takes advantage of multiprocessing. The

existence of a parallel version of Colt was another reason for selecting Colt at first place.

In fact, JQuantLib was initially written for using Colt and focus changed to Parallel Colt by the time.

Parallel Colt keeps compatibility with Colt APIs wherever possible. We plan to keep compatibility

with both via proxies.

For more information about Parallel Colt, please have a look at

Parallelism

JQuantLib is thread-safe
Parallel Colt takes advantage of multiple CPUs
Customized JVMs

Levels of parallelism

Parallel Colt
 The natural evolution for Colt

Important factor for selecting Colt
Still in development but no major issues
Last release: v0.6.1, Dec. 2008

 http://piotr.wendykier.googlepages.com/parallelcolt

====JVM and gc====

JVMs need to be optimised for specific hardware in order to perform well.

A good example is how IBM JVM support BigDecimal on AIX boxes.

Another good example is Azul Systems appliances.

I'd like to mention something about Azul appliances as they are certainly very interesting for those

willing to deploy applications written in Java onto critical, low latency environments.

* These appliances can have up to 54 cores per processors and reach 860 cores, 768Gb memory

in a single box.

* A customized JVM offers low latency due to hardware assisted garbage collector and hardware

assisted Java locking.

For more information about Azul Systems, please have a look at

http://www.azulsystems.com

JVM and gc

Some info about Azul appliances
 Getting rid of the JVM scaling issues

Customised JVM
Up to 54 cores per CPU
Up to 16 processors, 860 cores, 768Gb
Grid enabled: can scale even more
Hardware assisted GC
Hardware assisted Java locking
Performance increase: order of hundred times

 http://www.azulsystems.com

JVMs need to be optimised for specific hardware

====Profiling====

We cannot say we have enough focus on performance at the moment because our main focus is

on translation. We have only some incipient performance tests.

In the following chart we compare performance of European Options calculation between

QuantLib/C++ and JQuantLib/Java implementations.

In spite JQuantLib shows better performance... which is excellent!... JQuantLib is still in its its

childhood and we cannot say anything about performance yet.

JQuantLib

mean = 52.2 :: stddev = 72.4

QuantLib

mean = 68.8 :: stddev = 7.0

We can see that stddev from JQuantLib is much higher, mainly during start-up. Also, performance

alternates highs and lows, for unknown reasons at this time.

Profiling
No memory profiling yet
Performance tests are still incipient

===Next Releases===

The 2nd Release , which is planned to happen late October/2008 will have support for American

Options and Finite differences methods.

The 3rd Release, which is planned to happen late December/2008 will support Monte Carlo

simulation and bonds.

Next releases

Date: 12th February 2009 / Eclipse Banking Day, London
American Options with Finite Differences
American Options with Integral Engine
Asian Options
Translation and tests of all 35 calendar classes , from 2004 to 2012

Monte Carlo method
Sobol (Quasi Monte Carlo, low-discrepancy numbers)
Bonds

3rd release

4th release - tbd

Future

Purpose specific implementations
Hot swap
24x7x365

Pluggable OSGi blundles

Marketplace
 Products and services show case

Cooperation
Forum, wiki
Room for inovation

Thanks!

Please have a look at our website tomorrow for obtaining presentation notes.

Thanks :)
http://www.jquantlib.org/

Wer möchte mitarbeiten?

