Monday, December 04, 2006
Super Type Tokens

When we added generics to Java in JDK5, I changed the
class java.lang.Class to become a generic type. For
example, the type of String.class is now
Class<String>. Gilad Bracha coined the term type tokens
for this. My intent was to enable a particular style of API,
which Joshua Bloch calls the THC, or Typesafe
Heterogenous Container pattern. For some examples of
where this is used see the APIs for annotations:

public <A extends Annotation> A
java.lang.Class.getAnnotation

(Class<A> annotationClass)

My earliest use of this feature (like my earliest use of all
recent Java language features) appears in the compiler
for the Java programming language (javac), in this case
as a utility called Context, and you can find the code in
the open source version. It was a utility that allowed the
compiler to be written as a bunch of separate classes that
all refer to each other, and solved the hard problem of
getting all the parts created in an order such that they
can be initialized with references to each other. The utility
is also used to replace pieces of the compiler, for example
to make related tools like javadoc and apt, the Annotation

Processing Tool, and for testing. Today I would describe
the utility as a simple dependency injection framework,
but that wasn't a popular buzzword at the time.

Here is a simple but complete example of an API that
uses type tokens in the THC pattern, from Josh's 2006
JavaOne talk:

public class Favorites {
private Map<Class<?>, Object> favorites

new HashMap<Class<?>, Object>();
public <T> void setFavorite (Class<T>
klass, T thing) {
favorites.put (klass, thing);
}
public <T> T getFavorite (Class<T>
klass) |
return klass.cast (favorites.get

(klass));
}
public static void main(String[] args) {
Favorites f = new Favorites();

f.setFavorite (String.class, "Java");

f.setFavorite (Integer.class,
Oxcafebabe) ;

String s = f.getFavorite
(String.class);

int i = f.getFavorite
(Integer.class);
}
}

A Favorites object acts as a typesafe map from type
tokens to instances of the type. The main program in this
snippet adds a favorite string and a favorite Integer,
which are later taken out. The interesting thing about this
pattern is that a single Favorites object can be used to
hold things of many (i.e. heterogenous) types but in a
typesafe way, in contrast to the usual kind of map in
which the values are all of the same static type (i.e.
homogenous). When you get your favorite string, it is of
type string and you don't have to cast it.

There is a limitation to this pattern. Erasure rears its ugly
head:

Favorites:15: illegal start of expression
f.setFavorite (List<String>.class,
Collections.emptyList ());

A

You can't add your favorite List<String> to a Favorites
because you simply can't make a type token for a generic
type. This design limitation is one that a number of
people have been running into lately, most recently Ted
Neward. "Crazy" Bob Lee also asked me how to solve a
related problem in a dependency injection framework he
is developing. The short answer is that you can't do it
using type tokens.

On Friday I realized you can solve these problems without
using type tokens at all, using a library. I wish I had
realized this three years ago; perhaps there was no need
to put support for type tokens directly in the language. I
call the new idea super type tokens. In its simplest form it
looks like this:

public abstract class TypeReference<T> {}

The abstract qualifier is intentional. It forces clients to
subclass this in order to create a new instance of
TypeReference. You make a super type token for
List<String> like this:

TypeReference<List<String>> x = new
TypeReference<List<String>>() {};

Not quite as convenient as writing List<String>.class,
but this isn't too bad. It turns out that you can use a
super type token to do nearly everything you can do with
a type token, and more. The object that is created on the
right-hand-side is an anonymous class, and using
reflection you can get its interface type, including generic

type parameters. Josh calls this pattern "Gafter's
Gadget". Bob Lee elaborated on this idea as follows:

import java.lang.reflect.Constructor;

import
java.lang.reflect.InvocationTargetException;
import Jjava.lang.reflect.ParameterizedType;
import Jjava.lang.reflect.Type;

import Jjava.util.ArrayList;

import java.util.List;

/**

* References a generic type.

*

* @author crazybob@google.com (Bob Lee)
*/

public abstract class TypeReference<T> {

private final Type type;
private volatile Constructor<?>
constructor;

protected TypeReference () {
Type superclass = getClass
() .getGenericSuperclass();
if (superclass instanceof Class) {
throw new RuntimeException
("Missing type parameter.");
}
this.type = ((ParameterizedType)
superclass) .getActualTypeArguments () [0];
}

/**
* Instantiates a new instance of
{@code T} using the default, no-arg
* constructor.
*/
@SuppressWarnings ("unchecked")
public T newlInstance ()
throws NoSuchMethodException,
IllegalAccessException,

InvocationTargetException,
InstantiationException {
if (constructor == null) ({
Class<?> rawlType = type
instanceof Class<?>
? (Class<?>) type
(Class<?>)
((ParameterizedType) type) .getRawTypel();
constructor =
rawType.getConstructor () ;
}

return (T) constructor.newlInstance

()

/**
* Gets the referenced type.
*/
public Type getType () {
return this.type;

public static void main(String[] args)
throws Exception {

List<String> 11 = new
TypeReference<ArrayList<String>> ()
{}.newInstance /()

List 12
TypeReference<ArrayList> () {}.newInstance();

}

4

new

This pattern can be used to solve Ted Neward's problem,
and most problems where you would otherwise use type
tokens but you need to support generic types as well as
reifiable types. Although this isn't much more than a
generic factory interface, the automatic hook into the rich
generic reflection system is more than you can get with
simple class literals. With a few more bells and whistles
(toString, hashCode, equals, etc) I think this is a
worthy candidate for inclusion in the JDK.

