JQuantLib

A framework for Quantitative Finance written in Java

@]

N\ [2 D
IQuantLib

Quantitative Finance

What is Quantitative Finance?

® Valuation of financial instruments
® Involves complex mathematics and statistics

How it is used?
® Model trading strategies
® Determine optimal investment portfolios
® Testing of new models and strategies
® Risk valuation and management

Background

JQuantLib is based on QuantLib (implemented in C++)

QuantLib

e Started in 2000

o ~35 developers

e MSVC++/ GCC

® Production quality v0.9.7 (November 18th, 2008)

® Near 2m lines of code

® Ported several languages (C# (QLNet), Python, Perl,
Ruby...)

The Need of JQuantLib

QuantLib misses integration with Java

Evaluation of QuantLib showed

©® SWIG wrappers: inconvenient, incomplete, wrong
@ JNI: inconvenient, complex, counterproductive
© SWIG/JINI: Difficult customization / extensiblity

Alternatives

® Integration via J2EE and CORBA containers
® Translate QuantLib to Java : ~1300 classes

Objectives

JQuantLib aims...

® Translate QuantLib, which is written in C++

o Offer syntax and semantics Java developers expect but
keeping JQuantLib API as close as possible to QuantLib API

® Be exceptionally well coded, accurate and well documented

® Take advantage of features Java can offer

Challenges

QuantLib (C++)

® VVery complex object model (example: Monte Carlo)
® Abuse of templates and other idioms

Other challenges

® Maximum accuracy

® \ery strong type checking at compile time
® Relative bad performance of Java

® L atency due to Objects and GC

7. Current Status - Jan/2009

® Started September 2007

® Coding started January 2008

®~10 active developer

o First release in June 2008

© 40% of classes translated (January 2009)

Features

From QuantLib

® Day counters, calendars, IMM

® Term structures, yield structures

® Instruments: stocks, options, bonds, swaps, etc

® Methods: Black-Scholes, binomial, LMM, MonteCarlo,
low-discrepancy numbers, etc

JQuantLib specific planneq)

© OSGi support
® Support for parallelism (Parallel Colt,

hnp://p\otr.wendykier.googIepages.com/para\lelcolt)

® Grid enabled

Architecture

® Build Environment

® Quality Assurance

® Documentation

® Accuracy

@ Strong Type Checking
® Performance

Build Environment

e Linux

[REVET

e Eclipse

e KDE

o Umbrello
o SVN

® Maven

e Continuum
® Archiva

Quality Assurance

o JUnit4

e PMD

o FindBugs
® EclEmma
@ Cobertura
©® Mantis

Correctness

Strong type checking

® Enumerations
® Generic types
® Annotation on Java types (JSR-308)

Accuracy

® Floating point rounding errors

Annotations on Java types

double calc(double rate, double year) {
return Math.exp(1+rate,year);

}

double rate = 0.45;
double year = 0.5;

double resultl = calc(rate, year);
double result2 = calc(year, rate); / Wrong, not recognized by the compiler

Need for semantic checking

® Erradicate errors at compile time

® Test cases are not 100% guaranteed :(
CH++
typedef double Rate;

typedef double Year;
double calc(Rate rate, Year year);

JSR-308

private Double calc(@Rate double rate, @Time double time) {
return new Double (Mathc.exp(1+rate, time));

}

(@Rate double rate = 0.45;
@Time double time = 0.5;

1 This call will pass
Double resultl = calc(rate, time);

/I This call can give us a compiler error
Double result2 = calc(time, rate);

® Available in JDK7 (target date for JDK7: Early 2010)
® Annotations wherever a type is accepted
® Annotation processor plugged into compilation phase

Link

http://groups.csail.mit.edu/pag/jsr308/

Accuracy

System.out.printin(0.1 + 0.1 + 0.1);

0.30000000000000004

Requirements

® As accurate as QuantLib (C++)
® As lightweight as possible
® As fast as possible

Solution

® Primitive types
® Calculate epsilon when needed

Documentation

Requirements
1. Replace doxygen

Solution

1.UMLGraph
2.LaTeXtaglet

Links
http://www.umlgraph.org/

Tool for testing Latex formulas: Laeged

Performance

® Critical requirement
©® Needed for low latency
o Needed for scalability

Topics
® Comparison with C++
©® Numbers and Objects
® Collections
® Math Packages
® Parallelism
® JVM and gc
® Profiling

Comparison with C++

Benchmarks in DDJ (Java 5)

® 32bit integer arithmetic: as fast as

® 64bit double arithmetic: as fast as

o sort algorithms: 50% slower

o list operations: 2x slower

® matrix operations: 2x to 3x slower

e nested loops: 2x slower

e trigonometric functions: deadly slow!

http://www.jquantlib.org/index.php/DesignPerformance

Collections

Issues
o Not optimised for high performance systems
® Expansive object management and reference

Alternatives
® Arrays of primitive types
® Optimised JCF implementation

fastutil Listiist = DoubleArayList(; // backed by an array of doubles
list.add(1.0); // autoboxing :: list.add(new Double(1.0));
(DoubleArrayList)list.add(2.0); // no autoboxing :)
double d = (DoubleArrayList)list.getDouble(0); // no autoboxing

http://fastutil.dsi.unimi.it/

Math Packages

Colt was developed at CERN

® Stable and Reliable

® Optimised / High performance
® Production grade

® VVector and Matrix operations
e Linear Algebra

® Statistical methods

® Last release: v1.2, Sept/04

http://acs.Ibl.gov/~hoschek/colt/

Parallelism

Levels of parallelism

® JQuantLib is thread-safe
® Parallel Colt takes advantage of multiple CPUs
® Customized JVMs

Parallel Colt

® The natural evolution for Colt

® Important factor for selecting Colt

o Still in development but no major issues
e Last release: v0.6.1, Dec. 2008

http://piotr.wendykier.googlepages.com/parallelcolt

JVM and gc

JVMs need to be optimised for specific hardware

Some info about Azul appliances

® Getting rid of the JVM scaling issues

® Customised JVM

® Up to 54 cores per CPU

® Up to 16 processors, 860 cores, 768Gb

® Grid enabled: can scale even more

® Hardware assisted GC

o Hardware assisted Java locking

o Performance increase: order of hundred times

http://www.azulsystems.com

Profiling

o No memory profiling yet
e Performance tests are still incipient

Next releases

3rd release

® Date: 12th February 2009 / Eclipse Banking Day, London

® American Options with Finite Differences

® American Options with Integral Engine

® Asian Options

® Translation and tests of all 35 calendar classes , from 2004 to 2012

4th release - thd
® Monte Carlo method

® Sobol (Quasi Monte Carlo, low-discrepancy numbers)
e Bonds

Future

Pluggable OSGi blundles

® Purpose specific implementations
e Hot swap
© 24X7x365

Marketplace

® Products and services show case
o Cooperation

® Forum, wiki

o Room for inovation

Thanks :)

http://www.jquantlib.org/

Wer mdchte mitarbeiten?

