Translation Guidelines

From JQuantLib

Understand C++ code sometimes is very hard. The difficulty comes to the fact that a C++
programmer is free to do almost whatever they wish regarding how to organise source code, assign
synonyms to anything via macros, templates and typedefs... oh, well the list of tricks may be
exhaustive and varies a lot but mainly due to the intrinsic complexity of the original object model.

Contents

= 1 Divide to Conquer
m 1.1 A class or an interface?
= 1.2 Copy the header file
s 1.3 Access modifiers for fields and methods
m 1.4 Translate constructors first
m 1.5 Use TypeToken
» 2 To be organized

Divide to Conquer
What do you do when you face a class with dozens of methods belonging to a tangled object model?
Divide the problem into smaller pieces. This is frequently the only feasible approach.

Start from the beginning: create a very simple declaration of a Java class relative to that C++ class
and put our copyright notice on top of it. Copy the original C++ copyright notice after our copyright
notice.

If you think that you need to translate two or more classes in parallel due to their similarily,
hierarchy, coupling or any other reason, the first step is really identify what their names must be and
put the copyright notices on the top.

This is not very much but it is at least the first step done, done once and done properly and you will
never have to return to the copyright notice again.

Do it right at your first attempt and you will never have to do it again.
A class or an interface?

The next step is ammend the declaration of your Java class in order to extend the correct classes and
implement the correct interfaces. Another important point to consider is how the current class you
are working on participate in the object model. You need to consider that Java does not provide
multiple inheritance. Depending on the way this class participate in the object model, you'd better
create an interface and change this class in order to implement that interface. There are scenarios
where it's clear we need an interface even because the original C++ code looks pretty much like an
interface or even because it's explicitly stated in the original comments. When we start to understand
well what is happening with the original C++ code, it starts to become clear whether an interface
should be used or not. The rule is more or less like this:



Do your best efforts to determine if you need a class or an interface. If after enough analysis
you still in doubt, start using a class and continue translating the extended classes, etc. By the
time it will become clear in your mind whether you need to refactor your code or not.

Copy the header file

Copy the C++ header .hpp file definitions inside your Java class. References (the & symbol) and
typedefs in the C++ sources, which will give you a lot of compiler errors in Java. You may become
confused with so many compiler errors.

You can do some basic housekeeping simply replacing & by "" (nothing). You can also
substitute -> by "." (period). You can also substitute keywords like virtual and const, mutable

by their "equivalents" in Java.

C++ Java Comments

const final On field, method and parameter modifiers

const @ReadOnly | See this article

The keyword virtual means "not-final”, meaning that the method
can be overriden. It cannot be translated directly to abstract in
Java: you have to judge yourself whether abstract should be
applied or not.

virtual | abstract

This is another trick of C++ language. This excellent article
mutable (http://www.highprogrammer.com/alan/rants/mutable.html)
explains in detail and gives several examples

Care must be taken with the original C++ code. Remember that QuantLib is very well designed and
implemented. Be sure that there are always good reasons for the tricks they use in their code. If you
are not sure of what is happening, simply

Put "//TODO: code review :: blah, blah blah" in your Java code so that you can return later
and fix possible issues when you have better understanding of the entire scenario.

Access modifiers for fields and methods

You can have a bad time trying to identify if fields and methods should be private, public, protected,
final, abstract or virtual. It happens usually because the C++ code is disjoint, I mean: definitions in
one file and implementation in another file, usually... As I said, the C++ programmer is free to do
whatever mess they wish to do.

Understand properly the visibility and protection of fields and methods is much more important than
it seems at first glance. This understanding is critical for your translation as it will help you visualise
the object model and interdependencies between classes. Understanding properly, you will be able to
eventually propose a slight different object model that fits better in the way Java applications are
built. The general rule is:

Copy the header file into your Java file and start translating from there. The header file will
give you precious information about visibility of fields and methods.

After you copied the header file, translate the code and reorganise it in order to explicitly expose the



visibility and protection of fields and methods. Organise methods and fields accordingly, keeping all
public final methods together, for instance. The general rule here is:

Eradicate the mess from the beginning. The earliest you organise your code, the easiest it will
be to understand the original C++ code and produce high quality Java code.

Below you can see an example how a C++ header file was translated and reorganised.

//
// private static final fields

//
private static final String NON_NEGATIVE_RATE = "rate cannot be negative";

//

// private final fields

//

private final double rate;
private final double time;

//

// private fields

//

private double max;
private int counter;

//
// public constructors

//

MyExample (double rate, double time) {
}

//
// public final methods
//

double final getRate() {
}

double final getTime () {
}

//
// TODO: code review
// It's not clear what these methods do and how they are used

//

porivate final getSuspiciousThing() {

}

Sometimes is not that easy to do this initial step because a C++ header file may contain
implementation code as well, not only declarations.

Again, focus your efforts on organising the code properly. It will help you create small clusters of
code without compiler errors in the beginning of your translation. As your translation goes further,
your well organised code will help you isolate small clusters of code which do not compile yet.

Sometimes, due to the use of typedefs or templates probably, you are really confused about a fields
or method. You may even be in doubt if you have a field or a method in your hands and it is not rare
to be in doubt if it is a local element or something shared from some base class, or something that
will be defined in an extended class.

In case of doubt, assign "private final" to a field or method. Don't worry, the compiler is your
friend, in the future it will tell you whether you where wrong or not.



Translate constructors first

Starting translating first the constructors is more or less natural because they appear on the top of the
source code in general. Not only for this reason, but...

Because we need to understand what the original C++ code does, it's critical to understand
what constructors do and how they are called by extended classes and other classes.

It's a good opportunity to reinforce your understanding about the object model. For instance, if you
believed that this class is extended from a certain base class, but then you realize that there's a
pointer around and fields are being accessed via this pointed. Imagine that, after some analysis, you
discover that this class not only extends a certain base class, but also has an association or
composition (http://ootips.org/uml-hasa.html) to objects of that same base class. obviosly, this
understanding is critical for your translation.

To translate a constructor, follow the suggested sequence:

1. Copy its code from the C++ implementation .cpp file into the previous skeleton constructor
you created when you first organised your code.
2. Substitute typedefs by JSR-308 complyant counterparts.
Use TypeToken

Consider the following C++ template:

template <class T>
class Klass : public T {

}

There is no equivalent for this in Java. The following code will NOT compile.

oublic class Klass<T> extends T {

}

The "conventional way" would be (a) allocate the delegate instance and (b) pass the allocated
instance to the class constructor

abstract class SomeAbstractClass {

}

class OneConcreteClass extends SomeAbstractClass {

}

class AnotherConcreteClass extends SomeAbstractClass {

}

class Klass<T extends SomeAbstractClass> extends SomeAbstractClass {
private T delegate;

public Klass (T t) {
this.delegate = t;
}




This certainly compiles and comes close to the C++ template mechanism but is not wholly correct
because the original C++ sources sometimes is interested on extending OneConcreteClass or
AnotherConcreteClass and so on. Also this implementation is open to abuse as seen in the following
example:

OneConcreteClass delegate = new OneConcreteClass();
Klass<OneConcreteClass> klass = new Klass(delegate); // This is correct

Klass<AnotherConcreteClass> klassl = new Klass (delegate); // This also compiles but is not desirable

The solution is allow Klass to allocate the class it needs (a class derived from SomeAbstractClass)
depending on the generic parameter passed as [generic] parameter. Enter TypeToken. Using
TypeToken, you keep the responsibility of allocating the delegate inside the constructor, like this:

class Klass<T extends SomeAbstractClass> {
private T delegate;

public Klass () {
this.delegate = null;
try {
delegate = (T) TypeToken.getClazz (this.getClass()) .newInstance();
} catch (Exception e) {
throw new RuntimeException (e);
}
}

And now all you have to do is this:

Klass<OneConcreteClass> klass = new Klass();

What is the downside to doing this? Well one obvious one is this style is not particularly conducive
to injection. Also, if you use some type of factory pattern to create delegates, then that might also
need to be reworked.

But all in all this is a much cleaner and correct way of doing things and in addition, using
TypeToken keeps JQuantLib API very close to original C++ QuantLib API.

To be organized

Why you put final everywhere?... even primitive type parameters?

The keywork final means that a certain variable cannot be changed. It's a conceptual thing. It does
not matter whether your variable is primitive type, array or Object. We are simply willing to keep its
value constant during its lifetime. Period.

In particular, when final appears in parameters, some people erroneously think that we are trying to
guarantee unmutability of the variable which was originally passed as reference. This is not
completely correct:



» This is correct to think we are really willing to guarantee unmutability of the original object
passed as argument. We are really willing to keep its original value for the lifetime of the
method call. When Objects are passed, the called method is able to change its parameters
contents by directly changing them or calling methods which are not firnal in them. This is a
good programming practice to avoid this possibility.

= But it is is wrong to think there's such think as pass by reference in Java. It's very important to
understand that Java never (I repeat: never!) passes arguments by reference: it does not matter
if you passing a primitive type, an array or an Object. This concept is very important to be
understood specially by people migrating from C/C++. This concept is very well explained at
http://javadude.com/articles/passbyvalue.htm and will not be repeated here. Please have a
look. In addition, you may want to consider the following example:

poublic class QuickTest {

public static void main(String[] args) {
Double dl1 = 0.0; // Doubles are immutable
f(dl);
System.out.println(dl);
double d2 = 0.0; // doubles are immutable
f(d2); // autoboxing! : (
System.out.println(d2);
Structure sl = new Structure(0.0); // classes are mutable
g(sl);
System.out.println(sl.value); // ooops!

}

private static void f (Double d) {

}

private static void g(Structure s) {
s.value = 1.0;

}

private static class Structure {
public double value;
public Structure (double value) {

this.value = value;

But ... final even for primitive types? Why?

Simply because the value is conceptually unmutable. In particular it may be a primitive type but it
does not change the concept, anyway. Consider a theoretical situation where you suddenly decide to
search/replace some occurrences of double by MutableDouble in your application: your methods will



continue to enforce immutability of parameters. You will not be allowed to change the calling
variable by accident.

What the hell is those annotations @Time, @ReadOnly, etc all around?

Conceptually 5 pears are different from 5 apples and you should not assign the quantity of apples to
a variable intended to store the quantity of pears. The upcoming JDK7 will provide means of
detecting such conceptual erros. For more information see Strong Type Checking and Providing
unmutability to receivers

Use primitives

Prefer double instead of Double, long instead of Long and so on, unless you really need to test
nullity for some reason. Even in this case, its preferable to use Double.NaN instead of null to mark a
special condition where a double variable cannot be considered.

Retrieved from "http://www.jquantlib.org/index.php/Translation_Guidelines"

= This page was last modified 22:31, 16 October 2008.
s Content is available under GNU Free Documentation
License 1.2.



