
Safety-critical Interlocking Functionality in xUML 1 © Copyright 2004, UIC & KnowGravity Inc.

Specification and Validation of Specification and Validation of
SafetySafety--critical Interlocking Functionality using critical Interlocking Functionality using

Christian Bühler, KnowGravity Inc,
Badenerstrasse 808, 8048 Zürich, Switzerland
Tel. +41-44’43’42’000, Fax. +41-44’43’42’009

EUR INTERLOCKING

EXECUTABLEEXECUTABLE

2Safety-critical Interlocking Functionality in xUML © Copyright 2004, UIC & KnowGravity Inc.

ContentsContents

• The Context
− The Customer
− The Project

• CASSANDRA/xUML
• Some of CASSANDRA‘s advanced UML Modeling Features

− Time Events
− Model Instantiation
− Behavior Inheritance
− Concurrent State Regions
− Change Transitions
− Model Validation

• Demonstration

3Safety-critical Interlocking Functionality in xUML © Copyright 2004, UIC & KnowGravity Inc.

KnowGravity Inc.KnowGravity Inc.

Business Rules, Artificial Intelligence, COM, CORBA, EJB,
XML, Java, Prolog, C++, VB, Web-Technologies, CASE and

other development tools

Software engineering based on OO, SSADM or SA/SD,
Hermes, V-Modell, Software Process Improvement (SPI);
Software Ergonomics

Know-how

Processes & Methods Technology

Consulting

DoingTraining

BrokeringRunning

specific application of know-how
within our core competencies in guiding

customer projects

tools for automated
know how application

training of know-how within our
core competencies

application of know-how within our core
competencies in realization projects

mediation of know-how outside our
core competencies

Safety-critical Interlocking Functionality in xUML 4 © Copyright 2004, UIC & KnowGravity Inc.

EUR INTERLOCKING

The GENERIS ProjectThe GENERIS Project

5Safety-critical Interlocking Functionality in xUML © Copyright 2004, UIC & KnowGravity Inc.

The EuroThe Euro--Interlocking ConsortiumInterlocking Consortium

The Euro-Interlocking Project is an organisation of 17 railways from
across Europe, working together under the auspices of the UIC
(International Union of Railways) and in close collaboration with the
industry’s supplier organisations, the European Union and the ERTMS
Users Group in Brussels. The project is based in Swiss Federal Railway
offices in Zurich.

6Safety-critical Interlocking Functionality in xUML © Copyright 2004, UIC & KnowGravity Inc.

The Project "EuroThe Project "Euro--Interlocking"Interlocking"

The project’s primary aim is to reduce the life-cycle costs of future
interlocking systems by promoting harmonisation in the description of
railway requirements for interlocking systems and by the standardization
of interlocking interfaces. The project also aims at improving the
reliability and availability of future interlocking systems as well as
promoting the international cross-acceptance of products.

Having completed its work on qualitative requirements for interlocking
systems, the project has now turned its attention to functional
requirements…

7Safety-critical Interlocking Functionality in xUML © Copyright 2004, UIC & KnowGravity Inc.

The ChallengesThe Challenges

• Each railway has evolved different policies and practices for
handling its functional requirements
ð Develop a common method for describing functional
requirements

• Each railway tends to believe that its approach is the only possible
solution, as its functionality is unique.
ð Careful introduction of new approaches

• Safety-critical systems require careful validation and formal
verification
ð Leading edge techniques and technologies

• Project team distributed all over Europe
ð Reliance on web-based IT infrastructure for sharing information

• Completely different cultures of participating railways
ð Huge amount of social as well as political skills

8Safety-critical Interlocking Functionality in xUML © Copyright 2004, UIC & KnowGravity Inc.

The ApproachThe Approach

• To create an atomised database of written requirements for a given
railway.

• To model these requirements in UML, taking care to show how and
where each individual requirement is represented in the model.

• To simulate the model in order that the railway’s domain experts can
verify its functionality.

• Once this has been done, the requirements of a second railway can
be added to the textual database by ‘tagging’ common
requirements and adding new functionality as appropriate.

• Any differences can then be introduced to the model using
separate classes, in order to retain a clear distinction in the model
between the requirements of each railway.

9Safety-critical Interlocking Functionality in xUML © Copyright 2004, UIC & KnowGravity Inc.

Interlocking ModelsInterlocking Models

• Micro Interlocking
− Extremely simplified model to illustrate some key concepts
− Specific model
− For this presentation only

• Mini Interlocking
− Initial feasibility model with typical track elements and GUI
− Generic model with two national instantiations
− Euro-Interlocking UML reference model

• GENERIS
− The “real” Euro-Interlocking requirements model
− Generic model currently with one national instantiation
− Work in progress

Safety-critical Interlocking Functionality in xUML 10 © Copyright 2004, UIC & KnowGravity Inc.

CASSANDRA/xUMLCASSANDRA/xUML

11Safety-critical Interlocking Functionality in xUML © Copyright 2004, UIC & KnowGravity Inc.

• REMEMBER: a UML-based
declarative database

• KNOW: common sense in form
of a „class model of the
world“

• THINK: an inference engine to
process know how

• IAx: A set of Interface Agents
for various CASE tools

• AAx: A set of (hopefully useful)
Application Agents

CASSANDRA: A Platform for Advanced SECASSANDRA: A Platform for Advanced SE

CORECORE

REMEMBERREMEMBER

AA1AA1 AA2AA2 AAnAAn

KNOWKNOW

THINKTHINK

IA1IA1 IA2IA2 IAmIAm

• CORE: basic infrastructure
(GUI, XML, persistency,
licensing, etc.)

12Safety-critical Interlocking Functionality in xUML © Copyright 2004, UIC & KnowGravity Inc.

CASSANDRACASSANDRA--based Executable UMLbased Executable UML

• Based on KnowGravity‘s CASSANDRA platform
• Provides model simulation based on a UML Virtual Machine

− Actors and use cases
− Sequence diagrams and events
− Classes, associations, and instances
− State diagrams as multiple instances of communicating

state machines
− Simulation time

• Versatile functionality
− Model extraction from CASE tool (ARTiSAN RtS)
− Generic and user-specific simulation GUI
− Black box and glass box observation
− Regression testing

13Safety-critical Interlocking Functionality in xUML © Copyright 2004, UIC & KnowGravity Inc.

UML 2.0 Executable LanguageUML 2.0 Executable Language

UML 2.0 based action language for transition actions
• Instance construction and destruction
• Attribute manipulation
• Link construction and destruction
• Association navigation
• Events for synchronous and asynchronous communication
• (Filtered) event broadcasts over associations
• Control structures

UML 2.0/OCL-based language for transition guards and actions
• Complex boolean, arithmetic, set and term expressions
• All and exist quantifiers
• Reflective and meta evaluation

Safety-critical Interlocking Functionality in xUML 14 © Copyright 2004, UIC & KnowGravity Inc.

Some of CASSANDRA‘s advanced UML Some of CASSANDRA‘s advanced UML
Modeling Features illustrated onModeling Features illustrated on

Micro InterlockingMicro Interlocking

T3

T1 T2P1

S1

15Safety-critical Interlocking Functionality in xUML © Copyright 2004, UIC & KnowGravity Inc.

Micro Interlocking Use CasesMicro Interlocking Use Cases

Signaller

Train

reserve route

use route

reserve route
Signaller Point1 Signal1Interlocking System

Signaller requests to reserve a route reserve_route
Interlocking System requests Point1 to
move_right move_right

Point1 acknowledges
{< 10s}

at right
Interlocking System requests Signal1
to show_proceed show_proceed

Interlocking System acknowledges
request

request_completed

Interlocking System requests Point1 to
move_right move_right

Point1 acknowledges
{< 10s}

at rightPoint1 acknowledges
{< 10s}

at right

{< 10s}

Interlocking System requests Signal1
to show_proceed show_proceed

Interlocking System acknowledges
request

request_completed

Signaller requests to cancel a route cancel_route
Interlocking System requests Signal1
to show_stop show_stop

Interlocking System acknowledges
request

request_completed

Interlocking System requests Signal1
to show_stop show_stop

Interlocking System acknowledges
request

request_completed

16Safety-critical Interlocking Functionality in xUML © Copyright 2004, UIC & KnowGravity Inc.

Micro Interlocking Domain ObjectsMicro Interlocking Domain Objects

signal

route

id

track

element

id

point

*

*

tracks

*

1 entry_signal*

*

right_points*

*

left_points

17Safety-critical Interlocking Functionality in xUML © Copyright 2004, UIC & KnowGravity Inc.

Model InstantiationModel Instantiation

s1:signal

id = s1

t1:track

id = t1

r2:route

id = r2

t3:track

id = t3

t2:track

id = t2

p1:point

id = p1

r1:route

id = r1

right_points

left_points

running

application/
 create T1 from track by track(pid := t1);
 create T2 from track by track(pid := t2);
 create T3 from track by track(pid := t3);
 create S1 from signal by signal(pid := s1);
 create P1 from point by point(pid := p1);
 create R1 from route by route(pid := r1);
 create R2 from route by route(pid := r2);
 link R1 via route with T1 via tracks;
 link R1 via route with T3 via tracks;
 link R1 via route with P1 via left_points;
 link R1 via route with S1 via entry_signal;
 link R2 via route with T1 via tracks;
 link R2 via route with T2 via tracks;
 link R2 via route with P1 via right_points;
 link R2 via route with S1 via entry_signal;
 say 'Micro Interlocking is now ready to use!'

18Safety-critical Interlocking Functionality in xUML © Copyright 2004, UIC & KnowGravity Inc.

Time EventsTime Events

Time units are in simulation time:
• either user controllable units
• or real-time (seconds)

Alternative (non-UML) form:
• send <event> after <time>stop

Entry/say 'Show "stop" on signal!'

proceed

warmup

s ig n a l/

set_proceed/say 'Show "proceed" on signal!'

s et_s top /

after(5)/send ready

signal

signal

19Safety-critical Interlocking Functionality in xUML © Copyright 2004, UIC & KnowGravity Inc.

Behavior InheritanceBehavior Inheritance

ready

not ready

automatic

ready

not ready

manual

element/ id := pid

not_ready / ready /

m anual/

autom atic /

element

free
Entry/send ready
automatic/send ready

occupied

t rac k /

occupied/
send not_ready fre e /

track

element

id

track

20Safety-critical Interlocking Functionality in xUML © Copyright 2004, UIC & KnowGravity Inc.

Concurrent State RegionsConcurrent State Regions

point

element

id

point

normal
go_left[self.in_state(#manual)]/send to_left
go_right[self.in_state(#manual)]/send to_right
requested

left right

detected

left
Entry/
send ready;
if self.in_state(#manual)
then say 'Request completed!'

right
Entry/
send ready;
if self.in_state(#manual)
then say 'Request completed!'

undefined

requested

left rightleft right

detected

left
Entry/
send ready;
if self.in_state(#manual)
then say 'Request completed!'

right
Entry/
send ready;
if self.in_state(#manual)
then say 'Request completed!'

undefinedleft
Entry/
send ready;
if self.in_state(#manual)
then say 'Request completed!'

right
Entry/
send ready;
if self.in_state(#manual)
then say 'Request completed!'

undefined

error

po int /

to_left/
say 'Move point to left position!'

to_right/
say 'Move point to right position!'

at right /a t le ft /

after(30)/say 'Alert! point timed out!'

to_ left / to_right/

21Safety-critical Interlocking Functionality in xUML © Copyright 2004, UIC & KnowGravity Inc.

Change TransitionsChange Transitions

Change Transitions
• are triggered by a condition
• have no explicit triggering

event

Such a Change Condition
• may be arbitrarily complex

and stated over the whole
model

• is automatically checked
whenever something
changes in the model

preparing

ready
Exit/
send entry_signal.set_stop

active

preparing

ready
Exit/
send entry_signal.set_stop

idle

route/ id := pid

when(
 forall tracks is_true in_state(#automatic.ready) and
 forall left_points is_true in_state(#normal.detected.left) and
 forall right_points is_true in_state(#normal.detected.right) and
 entry_signal.in_state(#automatic.ready))/
send entry_signal.set_proceed; say 'Request completed!'

when(
 exists tracks is_true not(in_state(#(automatic.ready))) or
 exists left_points is_true not(in_state(#normal.detected.left)) or
 exists right_points is_true not(in_state(#normal.detected.right)) or
 not(entry_signal.in_state(#automatic.ready)))/

reserve_route/
 send left_points.to_left;
 send right_points.to_right

cancel_route/
say 'Request completed!'

route

22Safety-critical Interlocking Functionality in xUML © Copyright 2004, UIC & KnowGravity Inc.

Model ValidationModel Validation

Model-level Debugging:
• Object Manipulator to directly create and manipulate object

instances
• Object Inspectors to observe any number of objects at

runtime
• Save and restore of model state (snapshot)
• Selective logging of interesting events
• Speech output for interesting situations

Regression Testing:
• Simple recording of named test sequences
• Automatic verification of test sequences
• Grouping of test sequences

Safety-critical Interlocking Functionality in xUML 23 © Copyright 2004, UIC & KnowGravity Inc.

Experiences and SummaryExperiences and Summary

24Safety-critical Interlocking Functionality in xUML © Copyright 2004, UIC & KnowGravity Inc.

GENERIS: The “Real Thing”GENERIS: The “Real Thing”

Checking

Available

Moving

Locking

Stop
Entry/ send 'Entry'.'<ic> set signal to stop';

Reserved path monitoring 2 ok
Entry/send 'Entry'.'<ic> set proceed 1';

Reserved path monitoring 1 ok
Entry/send 'Entry'.'<ic> local shunting';

proceed
when(#'signal'.'approach'.'not approach locked' member 'Entry'.get_state and
not (forall 'approach' is_true (#'availability'.'free' member self.get_state)))/ send 'Entry'.'<ic> lock as approach';

Monitoring
when(#'signal'.'approach'.'approach locked' member 'Entry'.get_state and
forall 'approach' is_true (#'availability'.'free' member self.get_state))/ send 'Entry'.'<ic> release approach locking';

active

Checking

Available

Moving

Locking

Stop
Entry/ send 'Entry'.'<ic> set signal to stop';

Reserved path monitoring 2 ok
Entry/send 'Entry'.'<ic> set proceed 1';

Reserved path monitoring 1 ok
Entry/send 'Entry'.'<ic> local shunting';

proceed
when(#'signal'.'approach'.'not approach locked' member 'Entry'.get_state and
not (forall 'approach' is_true (#'availability'.'free' member self.get_state)))/ send 'Entry'.'<ic> lock as approach';

Monitoring
when(#'signal'.'approach'.'approach locked' member 'Entry'.get_state and
forall 'approach' is_true (#'availability'.'free' member self.get_state))/ send 'Entry'.'<ic> release approach locking';

Stop
Entry/ send 'Entry'.'<ic> set signal to stop';

Reserved path monitoring 2 ok
Entry/send 'Entry'.'<ic> set proceed 1';

Reserved path monitoring 1 ok
Entry/send 'Entry'.'<ic> local shunting';

proceed
when(#'signal'.'approach'.'not approach locked' member 'Entry'.get_state and
not (forall 'approach' is_true (#'availability'.'free' member self.get_state)))/ send 'Entry'.'<ic> lock as approach';

Reserved path monitoring 2 ok
Entry/send 'Entry'.'<ic> set proceed 1';

Reserved path monitoring 1 ok
Entry/send 'Entry'.'<ic> local shunting';

cancellation
Entry/ send 'lockable components'.'<ic> cancel reserved path';
 send 'Entry'.'<ic> release approach locking';
 send 'Entry'.'<ic> release route locking';

delayed cancellation

releasing
Entry/ send 'Entry'.'<ic> set signal to stop';

cancellation
Entry/ send 'lockable components'.'<ic> cancel reserved path';
 send 'Entry'.'<ic> release approach locking';
 send 'Entry'.'<ic> release route locking';

delayed cancellation

idle

<c> cancel main route[not (#'signal'.'approach'.'approach locked'
member 'Entry'.get_state)]/

<c> cancel main route[#'signal'. 'approach'.'approach locked'
member 'Entry'.get_state]/

when(exists 'lockable components' is_true
 in_state(#'monitoring'. 'stop'))/

when(exists 'lockable components' is_true
 in_state(#'monitoring'. 'stop'))/

when(forall 'lockable components' is_true
 in_state(#'monitoring'.'path monitoring 2 ok'))/

when(forall 'lockable components' is_true in_state(#'marked') and
 'Entry'.in_state(#'active'.'marking'.'marked'))/foreach 'lockable components' do
 send '<ic> operate path components ';

when(forall 'lockable components' is_true
 in_state(#'monitoring'.'path monitoring 1 ok'))/

when(forall 'lockable components'.'Setting' is_true
 ('<cfg> est1_cond' subset_of 'track elements'.get_state or '<cfg> est1_cond'='dont care'))/
 send 'lockable components'.'<ic> lock track element';
 send 'Entry'.'<ic> lock as main route';

Reserved P ath/

when(forall 'lockable components' is_true in_state(#'available') and
 (#'active'.'operating'.'ready' member 'Entry'.get_state) and
 not (#'active'.'route'.'main route locked' member 'Entry'.get_state) and
 (#'active'.'flank protection'.'not locked' member 'Entry'.get_state) and
 (#'active'.'marking'.'not marked' member 'Entry'.get_state))/
 send 'lockable components'.'track elements'.'<ic> mark track element';
 send 'Entry'.'<ic> mark track element';

when(forall 'lockable components' is_true
 in_state(#'available'))/

<c> set m ain route/

when(forall 'lockable components' is_true in_state(#'monitoring'))/

when(forall 'lockable components'
 is_true in_s tate(#'available'))/

aft er(30)/

Reserved Path

25Safety-critical Interlocking Functionality in xUML © Copyright 2004, UIC & KnowGravity Inc.

Summary & ExperiencesSummary & Experiences

☺Despite having ‘complete’ textual requirements, the process
of modelling still raised many questions about functionalities

☺UML provides highly compact solutions for the modelling of
large and complex requirements

☺ Simulation is helpful for validating the given functionality
☺UML is becoming accepted by railway signallers

LComplex models are still difficult to understand
LModel-level debugging could be improved
L Performance of ARTiSAN RtS ó CASSANDRA/xUML coupling

could be improved
L Layout problems with state diagrams having complex

conditions and actions

