
Software Architecture for 
Humans!

Eberhard Wolff

Head of Architecture

https://swaglab.rocks/ 

https://ewolff.com/ 

https://swaglab.rocks/
https://ewolff.com/


Architecture?

•This presentation:
Architecture = structure

•Architecture goal: Maintainability

•Architecture should take all quality goals into 
account!

…and tackle them!



Is this a Great Architecture?



Why are we Doing Architecture?

•Human have limited mental capacity

•Humans must be able to modify the system 

•Architecture should allow humans to
change a system with limited knowledge



Is this a Great Architecture?



Is this a Great Architecture?

For whom?



Maximum complexity team 
can handle efficiently

Actual complexity of the 
system

Complexity
👍



Is this a Great Architecture?

•Can only review architecture when
considering the people, too.

•There is no “absolute great architecture”!

•Use metrics with care!



Is this a Great Architecture?

• Interviews: Where are the problems?

•Support findings by metrics

•Think about improvements



Consider Social Aspects

•Who changes what?

•What is changed frequently?

•What is changed seldomly?

•…



https://software-architektur.tv/2023/06/07/folge168.html

https://software-architektur.tv/2023/06/07/folge168.html


How Do You Improve
an Architecture?



Obvious: Optimize Dependencies



Maximum complexity team 
can handle efficiently

Actual complexity of the 
system

Complexity

Traditional Fix: Reduce Complexity

👎



Maximum complexity team 
can handle efficiently

Actual complexity of the 
system

Complexity

Traditional Fix: Reduce Complexity

👍



What if interviews show that 
an architecture with well-
structure dependencies is 

really broken?



Obvious: Optimize Dependencies

Good luck!



Broken but Well-Structured?

•Well-structure code is not enough

•Developers must understand the system.

•Ever tried to understand a system you developed a 
few years back? 😬



Improve People not Software

•Figure out why developers don’t understand the 
system.

•Educate about the architecture!



Maximum complexity team 
can handle efficiently

Actual complexity of the 
system

Complexity

Fix: Education

Learn the System

Educate the team



Reading Code

•Code is read more frequently that written.

•Learn how to read code!

•Felienne Hermans researches this subject.

https://codereading.club/

https://software-
architektur.tv/2021/10/13/epsiode81.html

https://codereading.club/
https://software-architektur.tv/2021/10/13/epsiode81.html
https://software-architektur.tv/2021/10/13/epsiode81.html


Legacy: A Social Problem? 



Maximum complexity team 
can handle efficiently

Actual complexity of the 
system

Complexity

Legacy: Traditional Explanation

Software rot

Technical debt



Maximum complexity team 
can handle efficiently

Actual complexity of the 
system

Complexity

Legacy: Social Explanation

People quit



Maximum complexity team 
can handle efficiently

Actual complexity of the 
system

Complexity

Legacy: A Social Problem

THESE people cannot handle the 
complexity of THIS system 
efficiently



Maximum complexity team 
can handle efficiently

Actual complexity of the 
system

Complexity

Fix: Education

Learn the System

Educate the team



Big Ball of Mud

Icon: Lisa MoritzIcon: Lisa Moritz



Maximum complexity team 
can handle efficiently

Actual complexity of the 
system

Complexity

👍

Increasing Complexity: Fine?

Still maintainable 

Cheaper

Not all parts of a system will 
be perfect



Increasing Complexity: Fine?

•Must stay efficiently maintainable!

•Careful: Consequences of too low quality might be 
disastrous!

•But: There is no such thing as a perfect system.



Big Ball of Mud: Pattern

A Big Ball of Mud is haphazardly structured,
sprawling, sloppy, duct-tape and bailing wire, spaghetti 
code jungle.

Why is this architecture so popular?

You need to deliver quality software on time, and 
under budget.

Therefore, focus first on features and functionality, 
then focus on architecture and performance.
Big Ball of Mud, Brian Foote & Joseph Yoder
http://www.laputan.org/mud/

Icon: Lisa Moritz



DE https://software-architektur.tv/2023/03/31/folge159.html

https://software-architektur.tv/2023/03/31/folge159.html


Would people like to be 
called good developers?



Would people like to be 
praised for being good 

developers?



Maximum complexity team 
can handle efficiently

Actual complexity of the 
system

Complexity



Maximum complexity team 
can handle efficiently

Actual complexity of the 
system

Complexity

Good developers

Average 
developers



Vs. Good Architecture

•Good architecture: changeable

•Big Ball of Mud: Not really changeable

•Every architecture has weak spots.

•How many weak spots are acceptable?

Icon: Lisa Moritz



Maximum complexity team 
can handle efficiently

Actual complexity of the 
system

Complexity

Good developers

Average 
developers

Can growing complexity be avoided? Should 
it?

“Clean” is really hard and 
requires lots of effort.

Practical solution vs “theoretical”



Maximum complexity team 
can handle efficiently

Actual complexity of the 
system

Complexity

Good developers

Average 
developers

You saved 
the day!

You are great 
developers!

More complexity = 
more praise for good 
developers?

and job security?

and interesting challenges?



EN https://youtu.be/3MP-4UcAYJU 
DE https://youtu.be/p7r6IE7TkpU 

https://youtu.be/3MP-4UcAYJU
https://youtu.be/p7r6IE7TkpU


Those are not good 
developers!



Those are not good 
developers!

I would love to agree!



Java Certification

I‘d rather not work in a project

https://blogs.oracle.com/oracleuniversity/post/test-
your-java-knowledge-with-free-sample-questions 

So why would we ask for such 
knowledge?

- that requires understanding 
such code

-where people write such 
code.

https://blogs.oracle.com/oracleuniversity/post/test-your-java-knowledge-with-free-sample-questions
https://blogs.oracle.com/oracleuniversity/post/test-your-java-knowledge-with-free-sample-questions


DE https://www.heise.de/blog/Entwickler-innen-natuerliche-
Feinde-der-Softwarearchitektur-8971097.html 

https://www.heise.de/blog/Entwickler-innen-natuerliche-Feinde-der-Softwarearchitektur-8971097.html
https://www.heise.de/blog/Entwickler-innen-natuerliche-Feinde-der-Softwarearchitektur-8971097.html


Big Ball of Mud

•Developers should really be afraid of complexity.

•Being able to handle it might actually be bad.

Icon: Lisa Moritz



Micro- / Macro-
Architecture



Micro- / Macro-Architecture

•Delegate decisions

•Macro architecture:
Binding for all modules

•Micro architecture:
Potentially different for all modules

•Micro architecture can be left to the teams



Micro- / Macro-Architecture:
Static Code Analysis



Static Code Analysis



Should Static Code Analysis be Part of the 
Macro Architecture?

•Vote:

Yes, pre-defined metrics

Yes, teams decides about metrics

No



Micro- / Macro-Architecture

•Delegate decisions

•Macro architecture:
Binding for all modules

•Micro architecture:
Potentially different for all modules

•Micro architecture can be left to the teams



Should Static Code Analysis be Part of the 
Macro Architecture?

• Ideally: No

•Goals: Teams should act autonomously.

•Teams must deliver a certain quality.

•They decide how to do that.

…with or without static code analysis.



Trust

• I trust the teams to deliver quality

•They will choose the means to do that.

•That might or might not include static code analysis



Limit: Trust

•Teams may not be trusted.

•E.g. external teams that are known to deliver poor 
quality.

•Manage quality via static code analysis?



Goodhart’s Law

•Every measure which becomes a target becomes a 
bad measure.

•https://en.wikipedia.org/wiki/Goodhart%27s_law

https://en.wikipedia.org/wiki/Goodhart%27s_law


Micro- / Macro-Architecture:
Requirements Approach



Requirements: Different Approach

•Document that talks about requirements

…and how to handle them.



Chapters

Scaling

Security

Work with 
Multiple Teams

…



Scaling: Requirements

•Plan for growth!

•Refer to the business 
goals for details.

•Business goals are usually 
increased.

•Prepare for unplanned 
peaks!

Scaling

Security

Work with 
Multiple Teams

…

Requirements

Possible 
Solutions



Scaling: Requirements

•Scale up

•Horizontal scaling

•Sharding

•Graceful degradation

•Asynchronous integration

Scaling

Security

Work with 
Multiple Teams

…

Requirements

Possible 
Solutions



Scaling: Requirements

•Description

+ List of experts

+ Advantages / 
disadvantages

Scaling

Security

Work with 
Multiple Teams

…

Requirements

Possible 
Solutions



Requirements: Take Away

•Communicates trade-offs – the essence different 
solutions.

•Allows teams to make their own decisions – the 
essence of architecture.

•Actually focuses on supporting teams.

•More autonomy



Trust

•Trust teams fully to solve the problem

…or speak up.

•Support teams.

•Control?



Micro- / Macro-
Architecture: Conclusion



When Chose What?

•Depends on persons, culture, and trust

•Some need to be controlled ☹️

•Some want to be told what to do

Guidance / support

•Some want to decide by themselves

Really autonomous teams



What is important

is enabling teams

to make changes to their products 
or services

without depending on other teams
or systems.



Inverse Conway



Inverse Conway Maneuver

•Architecture should drive organization

• I.e. set up the organization

•Architecture will follow



🙂 😬 🙁

Developers, Designers …

😬

😬

🙁
🙁

🙂
🙂

😬

🙂
🙁



🙂 😬 🙁

Chaos

😬

😬

🙁
🙁

🙂
🙂

😬

🙂
🙁



😐 😐 😐

Order

😐

😐

😐
😐

😐
😐

😐

😐
😐



😐😐😐

Order

😐😐

😐

😐😐

😐

😐

😐

😐

Order Process

Delivery

Invoicing



😐😐😐

Order

😐😐

😐

😐😐

😐

😐

😐

😐

Order Process

Delivery

Invoicing

Modul

Modul

Modul



Inverse Conway: Simplification

• Inverse Conway changes the org chart

•Org chart is not communication!

•Assumption: Org chart team will collaborate on 
module & communicate more internally

•Does it work that way?

•What if members of different teams sit in the same 
room?



Inverse Conway: Simplification

•Do you think people will just follow a reorg?

•Do you think people in the same room will work more 
closely together?

•Why I am doing the presentation? What is the news?

•We know but we don’t use the knowledge



Irritating the Organization

•Sociology: “irritating” organizations.

•New org chart: irritation

•Can lead to new communication structure

•Can lead to org chart teams working on modules.

•Might also be completely ignored.

•DE https://software-
architektur.tv/2020/09/10/folge016.html

https://software-architektur.tv/2020/09/10/folge016.html
https://software-architektur.tv/2020/09/10/folge016.html


Inverse Conway: Assumptions

•People will follow the org chart.

•People will communicate according to the org chart.

•Too simplistic



What Now?



Conclusion

•Architecture is for people to better understand 
software.

•So: There is no absolute good / bad architecture.

• It depends on people.



Understand Your Problem!

•Software or Humans?

•Legacy because humans left?

•…and maybe not even a big ball of mud



Fix the Organization?

• I want to develop software

…not fix the organization

•Agile has the same problem



Live with It

• If you don’t want to / can’t fix the organization, you 
will have to live with it.

•You might need to adjust your architecture



Humans, not Robots

•Computers should be deterministic

(Yes, I know it doesn’t seem like it)

•Humans are not deterministic.

•Don’t simplify like the inverse Conway Maneuver!

•Actually, we all know but are not explicit about this.



Psychological Safety

•Without feedback no progress

•So: Need to create an environment where people feel 
safe to provide and receive feedback

•Psychological safety



https://software-architektur.tv/tags.html#Organisation



60-Minuten-Consulting

•Online

•99€

https://swaglab.rocks/60-min-consulting/ 

https://swaglab.rocks/60-min-consulting/


Send email to jugch2023@ewolff.com

Slides

+ Service Mesh Primer EN

+ Microservices Primer DE / EN

+ Microservices Recipes DE / EN

+ Sample Microservices Book DE / EN

+ Sample Practical Microservices DE/EN

+ Sample of Continuous Delivery Book DE

Powered by Amazon Lambda

& Microservices
EMail address logged for 14 days,
wrong addressed emails handled manually 


	Folie 1: Software Architecture for Humans!
	Folie 2: Architecture?
	Folie 3: Is this a Great Architecture?
	Folie 4: Why are we Doing Architecture?
	Folie 5: Is this a Great Architecture?
	Folie 6: Is this a Great Architecture?
	Folie 7
	Folie 8: Is this a Great Architecture?
	Folie 9: Is this a Great Architecture?
	Folie 10: Consider Social Aspects
	Folie 11
	Folie 12: How Do You Improve an Architecture?
	Folie 13: Obvious: Optimize Dependencies
	Folie 14: Traditional Fix: Reduce Complexity
	Folie 15: Traditional Fix: Reduce Complexity
	Folie 16: What if interviews show that an architecture with well-structure dependencies is really broken? 
	Folie 17: Obvious: Optimize Dependencies
	Folie 18: Broken but Well-Structured?
	Folie 19: Improve People not Software
	Folie 20: Fix: Education
	Folie 21: Reading Code
	Folie 22: Legacy: A Social Problem? 
	Folie 23: Legacy: Traditional Explanation
	Folie 24: Legacy: Social Explanation
	Folie 25: Legacy: A Social Problem
	Folie 26: Fix: Education
	Folie 27: Big Ball of Mud
	Folie 28: Increasing Complexity: Fine?
	Folie 29: Increasing Complexity: Fine?
	Folie 30: Big Ball of Mud: Pattern
	Folie 31
	Folie 32: Would people like to be called good developers?
	Folie 33: Would people like to be praised for being good developers?
	Folie 34
	Folie 35
	Folie 36: Vs. Good Architecture
	Folie 37
	Folie 38
	Folie 39
	Folie 40: Those are not good developers! 
	Folie 41: Those are not good developers! I would love to agree!
	Folie 42: Java Certification
	Folie 43
	Folie 45: Big Ball of Mud
	Folie 46: Micro- / Macro-Architecture
	Folie 47: Micro- / Macro-Architecture
	Folie 48: Micro- / Macro-Architecture: Static Code Analysis
	Folie 49: Static Code Analysis
	Folie 50: Should Static Code Analysis be Part of the Macro Architecture?
	Folie 51: Micro- / Macro-Architecture
	Folie 52: Should Static Code Analysis be Part of the Macro Architecture?
	Folie 53: Trust
	Folie 54: Limit: Trust
	Folie 55: Goodhart’s Law
	Folie 56: Micro- / Macro-Architecture: Requirements Approach
	Folie 57: Requirements: Different Approach
	Folie 58: Chapters
	Folie 59: Scaling: Requirements
	Folie 60: Scaling: Requirements
	Folie 61: Scaling: Requirements
	Folie 62: Requirements: Take Away
	Folie 63: Trust
	Folie 64: Micro- / Macro-Architecture: Conclusion
	Folie 65: When Chose What?
	Folie 66
	Folie 67: Inverse Conway
	Folie 68: Inverse Conway Maneuver
	Folie 69: Developers, Designers …
	Folie 70: Chaos
	Folie 71: Order
	Folie 72: Order
	Folie 73: Order
	Folie 74: Inverse Conway: Simplification
	Folie 75: Inverse Conway: Simplification
	Folie 76: Irritating the Organization
	Folie 77: Inverse Conway: Assumptions
	Folie 78: What Now?
	Folie 79: Conclusion
	Folie 80: Understand Your Problem! 
	Folie 81: Fix the Organization?
	Folie 82: Live with It
	Folie 83: Humans, not Robots
	Folie 84: Psychological Safety
	Folie 85
	Folie 86: 60-Minuten-Consulting
	Folie 87

