
Through The
Looking Glass:

GRACE, JANSEN
DEVELOPER ADVOCATE, IBM

@gracejansen27

Effective observability

for cloud native
applications

• Phrase by Lewis Carroll

• The sequel to Alice's
Adventures in Wonderland

• Alice passes through a
mirror over a fireplace and
finds herself (once more) in
an enchanted land

Through the Looking-Glass...

Agenda:

• Why do we need observability?

• What do we mean by “Observability”?

• How can we do this in our own apps?

• OpenTelemetry

• MicroProfile Telemetry 1.0

• Demo

• Summary and Resources

Why do we need
observability?

Evolution of Modern Infrastructure

© 2021 IBM Corporation @gracejansen27

Evolution of Applications

15 Factor Applications (revised from 12 factors)

1. One Codebase, one application

2. API first

3. Dependency management

4. Design, build, release, and run

5. Configuration, credentials and code

6. Logs

7. Disposability

https://developer.ibm.com/articles/15-factor-applications/

8. Backing services

9. Environment parity

10. Administrative processes

11. Port binding

12. Stateless processes

13. Concurrency

14. Telemetry

15. Authentication and authorization

https://developer.ibm.com/articles/15-factor-applications/

Why it matters

What do we mean
by “Observability”?

What is observability?

• In general…
• observability is the extent to which you can understand the internal state or

condition of a complex system based only on knowledge of its external
outputs

What is observability?

• In general…
• observability is the extent to which you can understand the internal state or

condition of a complex system based only on knowledge of its external
outputs

• In IT and cloud computing…
• observability also refers to software tools and practices for aggregating,

correlating and analyzing a steady stream of performance data from a
distributed application along with the hardware and network it runs on, in
order to more effectively monitor, troubleshoot and debug the
application and the network

Observability vs Monitoring

• Monitoring consists in using tools/techniques that highlight that an
issue occurred. A monitoring system could raise a warning when:

• average response time is getting slower and slower;
• a growing number of requests result in HTTP 500 – internal server error;
• application crashes;

• Observability is the ability to measure the internal states of a system
by examining its outputs (Control theory definition).

• An application is “observable” when it provides detailed visibility into
its behavior and always allows identifying the root cause of an issue.

How can we do this
in our own apps?

Implementing Observability

1. Instrument systems and applications to collect relevant
data (e.g. metrics, traces, and logs).

1

Implementing Observability

1. Instrument systems and applications to collect relevant
data (e.g. metrics, traces, and logs).

2. Send this data to a separate external system that can
store and analyze it.

1

2

Implementing Observability

1. Instrument systems and applications to collect relevant
data (e.g. metrics, traces, and logs).

2. Send this data to a separate external system that can
store and analyze it.

3. Provide visualizations and insights into systems as a
whole (including query capability for end users).

1

2

3

Instrumentation: The Three Pillars

Logs

Observability

Distributed
Traces

Metrics

1

Instrumentation: The Three Pillars

Logs

Observability

Distributed
Traces

Metrics

1

ProfilingEnd-user
monitoring

Instrumentation: Logs

Logs
• a timestamped message emitted by services or

other application components, providing coarser-
grained or higher-level information about system
behaviors (like errors, warnings, etc) and typically
will be stored in a set of log files.

• not necessarily associated with any particular user
request or transaction

Logs

Instrumentation: Metrics

Metrics
• aggregations of numeric data about

infrastructure or an application over a period
of time. Examples include system error rates,
CPU utilization, and request rates for a given
service. Metrics

Health

Check
Metrics

Fault

Tolerance
OpenAPI

Config

Open

Tracing

JWT

JSON-BRest ClientCDIJAX-RS JSON-PCore

Integrate

Observe

https://microprofile.io/

Open cloud-native Java APIs

Open

Telemetry

GraphQL
Reactive

Messaging

https://microprofile.io/

Compatible Runtimes

Compatible with MicroProfile APIs 2.x and
3.x

4.x 5.x 6.x

Open Liberty x x x x

WebSphere Liberty x x x x

Quarkus x x

Payara Micro x x x

WildFly x x x

Payara Server x x x

TomEE x x

KumuluzEE x

Thorntail x

JBoss EAP XP x

Helidon x x

Apache Launcher x

https://microprofile.io/compatible

https://microprofile.io/compatible

MicroProfile Metrics

“This specification aims at providing a unified way for
Microprofile servers to export Monitoring data

("Telemetry") to management agents and also a unified
Java API, that all (application) programmers can use to

expose their telemetry data.”

Instrumentation: Traces

• Distributed traces (i.e. Traces)
• records the paths taken by requests (made by an

application or end user) as they disseminate
through multi-service architectures, like
microservice, macroservice, and serverless
applications. Distributed Traces

Key Tracing Concepts

• Traces
• Traces represent requests and

consist of multiple spans.

• Spans
• Spans are representative of

single operations in a request. A
span contains a name, time-
related data, log messages, and
metadata to give information
about what occurs during a
transaction.

Image: https://blog.sentry.io/2021/08/12/distributed-tracing-101-for-full-stack-developers/

https://blog.sentry.io/2021/08/12/distributed-tracing-101-for-full-stack-developers/

Key Tracing Concepts

• Context
• Context is an immutable object

contained in the span data to
identify the unique request
that each span is a part of. This
data is required for moving
trace information across
service boundaries, allowing
developers to follow a single
request through a potentially
complex distributed system.

Image: https://blog.sentry.io/2021/08/12/distributed-tracing-101-for-full-stack-developers/

https://blog.sentry.io/2021/08/12/distributed-tracing-101-for-full-stack-developers/

OpenTelemetry

Open Telemetry

• High-quality, ubiquitous, and portable telemetry to enable
effective observability

• OpenTelemetry is a collection of tools, APIs, and SDKs. Use it
to instrument, generate, collect, and export telemetry data
(metrics, logs, and traces) to help you analyze your software’s
performance and behaviour.

• NB: OpenTelemetry ≠ observability back-end

https://opentelemetry.io

https://opentelemetry.io/

Creating One Standard

https://opentelemetry.io/docs/

https://opentelemetry.io/docs/

https://opentelemetry.io/docs/collector/

https://opentelemetry.io/docs/collector/

MicroProfile
Telemetry 1.0

MicroProfile Telemetry 1.0

• Introduced in MicroProfile
6.0 release

• Adopts OpenTelemetry
Tracing

• Set of APIs, SDKs, tooling
and integrations

• Designed for the creation
and management of
telemetry data (traces)

https://github.com/eclipse/microprofile-telemetry

https://github.com/eclipse/microprofile-telemetry

MP Telemetry Instrumentation

• Automatic Instrumentation:
• Jakarta RESTful Web Services and MicroProfile Rest Client

automatically enlisted in distributed tracing

• Manual Instrumentation:
• Manual instrumentation can be added via annotations @WithSpan or

via CDI injection @Inject Tracer or @Inject Span or
programmatic lookup Span.current()

• Agent Instrumentation:
• Use OpenTelemetry Java Instrumentation project to gather telemetry

data without any code modification

How MP Telemetry works

Backend Exporter

• You can export the data that MicroProfile
Telemetry collects to multiple exporters.

• E.g.:
• Jaeger

• Zipkin

• Otel Collector

2

Visualization

• Prometheus
• Systems monitoring and alerting toolkit

• Grafana
• An open source analytics and interactivee visualization

• Kibana
• provides users with a tool for exploring, visualizing, and building dashboards

on top of the log data stored in Elasticsearch clusters.

https://blog.sebastian-daschner.com/entries/openliberty-monitoring-prometheus-grafana

3

https://blog.sebastian-daschner.com/entries/openliberty-monitoring-prometheus-grafana

Demo Time

Open Liberty

https://developer.ibm.com/articles/why-cloud-native-java-developers-love-liberty/

Focus on code

Easy to make fast and iterative changes

Easy to write tests

True-to-production testing (as much as
possible)

Ready for containers

Not-in-your-way tools and flexibility

https://developer.ibm.com/articles/why-cloud-native-java-developers-love-liberty/

Developer productivity
Repositories BuildIDEs

Dev Mode

APIs Testing

© 2021 IBM Corporation

MP Telemetry Demo

https://github.com/yasmin-aumeeruddy/mpTelemetry-Demo

https://github.com/yasmin-aumeeruddy/mpTelemetry-Demo

Summary:

• Entering a world of increased complexity

• Effective observability is critical to monitor and understand
how our applications are behaving and performing in this
complex environment

• Many open source tools available to help us look through the
looking glass, including new standards like Open Telemetry

• OSS Java tools like MicroProfile enable us to make use of this in our
own applications

Resources:

• What is observability? - https://www.ibm.com/uk-
en/topics/observability

• OpenTelemetry and MicroProfile: Enabling effective
observability for your cloud-native Java applications -
https://developer.ibm.com/articles/opentelemetry-effective-
observability-for-your-cloud-native-java-apps/

• Tracing your microservices made easy with MicroProfile
Telemetry 1.0 - https://openliberty.io/blog/2023/03/10/tracing-
with-microprofile-telemetry.html

https://www.ibm.com/uk-en/topics/observability
https://developer.ibm.com/articles/opentelemetry-effective-observability-for-your-cloud-native-java-apps/
https://openliberty.io/blog/2023/03/10/tracing-with-microprofile-telemetry.html

Open Liberty Interactive Guides

https://openliberty.io/guides/#observability

https://openliberty.io/guides/#observability

Interactive cloud-native labs

Connect with us

https://www.linkedin.com/company/openlibertyio/ https://twitter.com/OpenLibertyIO

https://www.linkedin.com/company/openlibertyio/
https://twitter.com/OpenLibertyIO

GRACE, JANSEN
@gracejansen27

THANK
YOU

