
1

● Linux, macOS (Intel & M1), Windows

● Docker

● IDE with JUnit 5 support

○ IntelliJ

○ VS Code with the "Test Runner for Java" extension

○ Eclipse (supported, but not covered by examples)

● Clone github.com/CodeIntelligenceTesting/jazzer-workshop

● A favourite Java library, ideally one that handles untrusted input

Prerequisites

Slides available at:

kl.rs/jug.ch

https://github.com/CodeIntelligenceTesting/jazzer-workshop
http://kl.rs/jug.ch

2

Fuzzing Java with Jazzer

3

Fabian Meumertzheim
Senior Software Engineer

Background
● Mathematician by education

● OSS contributor (Bazel, Chromium,

Android Password Store)

Responsibilities at Code Intelligence
● Fuzzing Technologies

● OSS Initiatives & Cooperations

@fhenneke ✉ meumertzheim@code-intelligence.com

fmeum

https://twitter.com/KhaledYakdan

4

Fuzzer System under TestRandom Inputs

What is Fuzzing?

fuzz verb
\ ˈfəz \
1. to make or become blurred

5

Image Parser

Blackbox Fuzzing

Data from Unit Tests

Random Mutations

6

Smart Mutations

covered branches, magic bytes,

compared values

Instrumented Image Parser

00x(FF D8 ...)

private static final int[] MAGIC_NUMBERS_GIF = { 0x47, 0x49, };
private static final int[] MAGIC_NUMBERS_JPEG = { 0xff, 0xd8, };

//...
if (compareBytePair(MAGIC_NUMBERS_GIF, input)) {
 return ImageFormats.GIF;
} else if (compareBytePair(MAGIC_NUMBERS_JPEG, bytePair)) {
 return ImageFormats.JPEG;
}
return ImageFormats.UNKNOWN
//...

private static final int[] MAGIC_NUMBERS_GIF = { 0x47, 0x49, };
private static final int[] MAGIC_NUMBERS_JPEG = { 0xff, 0xd8, };

//...
if (compareBytePair(MAGIC_NUMBERS_GIF, input)) {
 return ImageFormats.GIF;
} else if (compareBytePair(MAGIC_NUMBERS_JPEG, bytePair)) {
 return ImageFormats.JPEG;
}
return ImageFormats.UNKNOWN
//...

Whitebox Fuzzing

7

1 800
MICROSOFT OFFICE

5 200
MOZILLA FIREFOX

28 000
OSS-FUZZ

29 000
GOOGLE CHROME

12 687
LINUX

What’s all the Fuzz About?

8

● Buffer Over-Read in the TLS implementation of OpenSSL <= 1.0.1f

● Allows partial disclosure of memory contents (e.g. private keys)

● Introduced: 2011-12-31

● Reported: 2014-04-01

● ~17% of the public servers using TLS were affected

● Lessons learned:

○ OSS development of core infrastructure is severely underfunded (2 full-time devs for 500k SLOC)

○ Code reviews are not sufficient by themselves to catch security issues during development

Heartbleed (CVE-2014-0160)

9

If you have found an issue with security impact in an open-source project:

1. Keep it to yourself.

2. Send detailed instructions reproducing the issue to (ordered by preference):

a. Dedicated security contacts (look for SECURITY.md, security.txt, Tidelift, bug bounty programs)
b. Maintainers (README.md, backing company website, releases)
c. Top contributors (commit history)

d. Corporate sponsors

3. Wait. Most open-source projects are freetime projects, even if they are critical infrastructure.

4. Follow up after a few weeks and go back to 2.

5. Ask your contact whether they will request a CVE or would prefer you to do so. CVEs aren’t

badges, but greatly simplify the “Am I affected?” problem for end users.

6. Agree on a date for public disclosure.

Responsible Disclosure for OSS software

https://securitytxt.org/
https://tidelift.com/
https://cveform.mitre.org/

10

Getting to Know Jazzer

11

● Coverage-guided: based on libFuzzer & JaCoCo

● No sources required: agent-based instrumentation

● Collects dynamic data from comparisons & common functions

● Open-source since Feb 2021

github.com/CodeIntelligenceTesting/jazzer

Jazzer — Modern Fuzzing for the JVM

https://github.com/CodeIntelligenceTesting/jazzer

12

What's in a Jazzer?

Jazzer executable

libFuzzer

Application

Jazzer agent

JVM

starts

starts

provides coverage and mutation feedback

reports findings

executes repeatedly

JavaNative

13

Autofuzz – “No-Code Fuzzing”

Autofuzz automatically generates arguments for a specified method, reporting all uncaught
exceptions and bug detector findings.

Autofuzz generates:

● primitive types

● Strings

● Arrays and maps

● InputStreams

● Class and Method instances

● User-defined classes via recursive constructor and builder invocations

14

docker run \

-v $(pwd):/fuzzing \

-it cifuzz/jazzer-autofuzz \

org.jsoup:jsoup:1.14.1 \

"org.jsoup.Jsoup::parse(java.lang.String)"

Optional arguments:

 --keep_going=N # Stop after N findings

--autofuzz_ignore=some.Exception,some.other.Exception

Getting Started with Autofuzz

15

Task:

● Try out Autofuzz on your favourite Java library.

○ Functions that "parse" their arguments make for good entry points.

○ The smaller the scope, the better.

● If there are findings, compile and run the Java reproducer (Crash_<hash>.java)

○ Requires having the library and its dependencies on the classpath.

Questions:

● Does the fuzzer produce any interesting finding?

● Was Autofuzz able to construct reasonable arguments?

Getting Started with Autofuzz

16

Writing a First Java Fuzz Test

17

Fuzzing Terminology

● fuzz test (also fuzz target)

○ function or program that receives input from the fuzzer

○ should exercise interesting and varied behavior in the code under test

● crashing input

○ fuzz target input that causes a crash (or more generally a bug) in the tested code

● seed corpus
○ user-supplied collection of valid inputs (e.g. example JPEGs for an image parser)

○ base for the fuzzer's mutations

● generated corpus
○ collection of "interesting" inputs generated by the fuzzer over time

● sanitizer (also bug detector)

○ instrumentation applied to the code under test that detects undesired behavior as it happens

○ first examples: AddressSanitizer, UndefinedBehaviorSanitizer for C/C++

18

1. Set up JUnit 5 for your project.

○ Many IDEs such as IntelliJ and VS Code handle this automatically.

○ For others, start with one of the samples at github.com/junit-team/junit5-samples.

2. Add a dependency on com.code-intelligence:jazzer-junit:0.12.0.

3. Add a test method annotated with @FuzzTest taking a single parameter of type byte[] or

FuzzedDataProvider (more on that soon).

Creating a Fuzz Test

https://github.com/junit-team/junit5-samples

19

Problem:

Fuzzers naturally produce raw bytes as input, but Java functions rarely operate on byte[].

Solution:

Jazzer offers a FuzzedDataProvider that turns the binary input into Java types.

See the javadocs for a full reference of all functions.

FuzzedDataProvider

https://codeintelligencetesting.github.io/jazzer-api/com/code_intelligence/jazzer/api/FuzzedDataProvider.html

20

● Just click the play button to execute the test on the seed corpus (currently empty) only.

○ This mode serves as a regression test that behaves just like an ordinary JUnit test.

● To start fuzzing, set the environment variable JAZZER_FUZZ to any non-empty value.

○ IntelliJ: Edit Configurations → Modify options… → Environment variables

○ VS Code: Add a java.test.config to your settings.json

Running a Fuzz Test from the IDE

21

The Two Faces of @FuzzTest

Regression test (JAZZER_FUZZ not set)

● an ordinary JUnit @ParameterizedTest

● executes the fuzz test in a subtest for each
entry in the seed corpus directory
(YourClassNameSeedCorpus in your fuzz
test’s package’s resource directory, change
with seedCorpus)

● meant to be run in CI alongside your usual
tests to verify that all issues found with
fuzzing have been and remain fixed

● can also be used to conveniently debug
findings and compute coverage

Fuzzing run (JAZZER_FUZZ non-empty)

● performs actual fuzzing

● starts by running over the seed corpus

● passes if it doesn’t find a crash within 1
min (default, use maxDuration to
change)

● emits crashing inputs into the seed corpus
directory to have them picked up by the
regression test

● can be run in CI, but mostly meant for
local usage

22

Tasks:

● Start with the Maven project template in the “fuzz-test-template” directory.

● Execute the fuzz test from the IDE, both as a regression test (without JAZZER_FUZZ) and as an

actual fuzzing run (with JAZZER_FUZZ).

● Debug a crashing input by debugging the corresponding failing subtest.

● Add some code under src/main/java/com/example and another @FuzzTest that tests it.

● Use more of the methods provided by FuzzedDataProvider.

Create and Run Your First Fuzz Test

23

1. Download a Jazzer release or use the cifuzz/jazzer image (working directory: /fuzzing)

2. Run the jazzer(.exe) executable with the following arguments:

○ --cp=<classpath>: classpath including your tests and tested code (no need to list jazzer-junit)

■ mvn test -X prints the classpath under "test classpath"

○ --target_class=<name>: name of the class containing the @FuzzTest

○ --target_method=<name>: name of the particular @FuzzTest to run in that class (if multiple)

○ <path to generated corpus>: directory to collect fuzzer-generated inputs in

Some features as well as optimal performance are (currently) only available in this way:

● --fork=N: fuzz in N parallel processes

● --minimize_crash=1 <input file path>: minimize a given crashing input

Running a Fuzz Test from the Terminal

24

Tasks:

● Build your fuzz test and collect the required classpath.

● Execute the fuzz test using the Jazzer CLI.

● Try out --fork.

● Try to minimize a finding with --minimize_crash.

Running a Fuzz Test from the Terminal

25

Advanced Fuzzing Techniques

26

Task:

● Execute the fuzz test in the "encryption" project.

Questions:

● How far does the fuzzer get?

● Why does it get stuck?

● What would it need to know to progress?

Military-Grade Encryption™

27

Task:

● Execute the fuzz test in the "maze" project.

Questions:

● How far does the fuzzer get?

● Why does it get stuck?

● What would it need to know to progress?

Through the Maze

28

Concept:

● Fuzzing is already good at dynamically exploring code and program state.

● Thus, all it takes to find vulnerabilities is to detect them when they happen.

Current state:

Jazzer ships with bug detectors for:

● Insecure deserialization

● Insecure use of reflection (arbitrary class loads/method executions)

● OS command, SQL, LDAP and Expression Language injection

● NamingContextLookup (of log4shell fame)

Writing bug detectors isn't that difficult — we will go over an example.

Writing Custom Bug Detectors

29

“Bring Your Own Library”

30

Tasks:

● You can again start with the Maven project template in the “fuzz-test-template” directory.

● Add a dependency on your favourite Java library and write a @FuzzTest covering an

“interesting” function: a parser, an algorithm, a sanitization/canonicalization routine, …

● Verify that the result is as expected and let the fuzzer try to break these assumptions.

Note:

By default, Jazzer only instruments code in packages that share the first two segments (e.g.

com.example) with your test. If needed, modify the default by specifying a comma-separated list of

package globs in junit-platform.properties:

Fuzzing an OSS Library

31

Problem:

When fuzzing complex formats, synthesizing valid and varied inputs from scratch is difficult.

Solutions:

Add example inputs to the seed corpus.

● JUnit: Create and populate the test resource directory

src/test/resources/com/example/YourFuzzTestClassSeedCorpus

● CLI: Pass path to seed corpus to Jazzer as the second positional argument after the generated corpus.

Good starting points for common formats:

● github.com/dvyukov/go-fuzz-corpus

● github.com/MozillaSecurity/fuzzdata/tree/master/samples

Task: Add seed corpus entries to your fuzz test and observe the difference in coverage.

Adding a Seed Corpus

https://github.com/dvyukov/go-fuzz-corpus
https://github.com/MozillaSecurity/fuzzdata/tree/master/samples

32

Where to go from here

33

OSS-Fuzz is Google’s fuzzing initiative for open-source software (est. 2016).

Jazzer has been available on OSS-Fuzz since March 2021.

Current stats:

● 66 Java projects

○ including: jsoup, Jackson, zxing, protobuf-java, …

● >500 bugs found

● >100 issues with security impact

● 17 CVEs for released security-critical bugs

● Happy maintainers due to highly actionable bug reports with automatic fix verification

OSS-Fuzz – Large-Scale (Java) Fuzzing

34

Integrating a relevant open-source project pays $5,000 or more and minimally comes down to:

1. Contact maintainers to gauge interest up front.

2. Provide a Dockerfile describing the project's build-time dependencies (usually just Maven/Gradle).

3. Add fuzz targets covering the basic use cases of the project that operate on untrusted data.

4. Add a build.sh that builds the project and fuzz targets from source.

5. (Optional) Upstream the fuzz targets.

6. (Recommended) Donate to the project — or be a maintainer and use this as additional funding.

More info at: google.github.io/oss-fuzz/getting-started/new-project-guide/jvm-lang

OSS-Fuzz – How to Contribute

https://google.github.io/oss-fuzz/getting-started/new-project-guide/jvm-lang

35

cifuzz – Open-Source CLI for Fuzzing

● A single CLI tool for the entire fuzzing workflow:

○ Creating fuzz test stubs & setting up IDE/build system integrations

○ Running fuzz test and managing findings

○ Generating coverage reports

● Currently supports CMake (C/C++), next up on the roadmap:

○ Bazel (C/C++, Java)

○ Maven/Gradle

○ Node.js (backed by Jazzer.js)

github.com/CodeIntelligenceTesting/cifuzz

https://github.com/CodeIntelligenceTesting/jazzer.js
http://github.com/CodeIntelligenceTesting/cifuzz

36

● Fuzzes multi-service, multi-language deployments (REST/gRPC, C++/Java/Go)

● Integrates with your CI/CD pipeline

code-intelligence.com

CIFuzz – Web Apps, CI/CD & more

https://code-intelligence.com

