
bertjan@openvalue.eu

Making sensible software design decisions
Bert Jan Schrijver

@bjschrijver

Generic or specific?

Bert Jan Schrijver
L e t ’ s m e e t

@bjschrijver

Levels of

generic vs specific

Tools to help decide

Flexibility in software

Definitions
When & why to go
generic

Sharing code in

an organization

Conclusion

Outline
W h a t ‘ s n e x t ?

The cost of generic

@bjschrijver

What is software design?

• Tailor made for use in a single place

• Tailored to a specific problem or scenario

• May not be easily adaptable to other

situations

Specific solution (or design)

• More flexible and reusable solution

• Solution can be applied to a wide range of

problems or scenarios

• Generified solution that can be used in

more than 1 place

Generic solution (or design)

Background source: https://filmquarterly.org/2012/07/02/i-robot-what-do-robots-dream-of/

• Breaking a system or problem into
smaller parts that are easier to
understand

• Example: Google search

Hierarchical decomposition

Background source: DALL·E

Hierarchical decomposition

Source: https://c4model.com

• Kind and degree of interdependence
between building blocks of software

• Measure of how closely connected two
components are

• Usually contrasted with cohesion 
(low coupling -> high cohesion)

Coupling

Background source: DALL·E

• Inheritance

• Messages or events

• Temporal

• Data types

• Data

• Code / API (binary or source)

Types of coupling

Background source: DALL·E

Be careful with coupling!

Generic solution = coupling!

The risk of DRY

• Should we be prepared for future
changes?

• Design should be structured to
accommodate change

• Risk management: risk of wrong decision

“Future proof” design

Background source: DALL·E

About flexibility in software…

“Highly specific code is often preferable
to sophisticated configuration”

- Stefan Tilkov

When are we going to talk

about generic vs specific?

Background source: https://7216-presscdn-0-76-pagely.netdna-ssl.com/wp-content/uploads/2011/12/confused-man-single-good-men.jpg

• Code / class level

• Library level

• Data level

• (Micro)service level

• Organisation level

Generic vs specific: levels

Background source: DALL·E

Generic or specific?

• Do we really need this now? (YAGNI)

• Time/effort for generic vs specific

• Myth of “first time right”

• Complexity and scope

• Future needs and evolution

• The rule of three

Tools to help decide

• When reusing code, copy it once, and only
abstract the third time

• Avoid writing the wrong abstraction

• It’s easier to make a good abstraction from

duplicated code than to refactor the wrong
abstraction

• "Three strikes and you refactor"

The rule of three

Background source: https://learntalk.org/en/blog/where-did-the-saying-third-times-the-charm-come-from

• First case: Just build it, don’t genericise at all.  
Solve the problem in front of you (YAGNI)

• Second case: Duplicate the original, redesign and
extract common behaviour while you change

• Third case: examine the lessons from the first two
passes, design a generic solution that will make it
easy to add your third case

The rule of three

Background source: https://learntalk.org/en/blog/where-did-the-saying-third-times-the-charm-come-from

• Pass 1: YAGNI / rule of three: as simple and specific as
possible

• Pass 2: based on solution domain knowledge: 
is a generic solution less work?

• Pass 3: based on problem domain knowledge: 
is the easiest solution actually correct?

• Pass 4: looking at customer behaviour or other non
technical considerations, does this change your decision?

Design heuristics

Background source: DALL·E

• Concept from Domain Driven Design

• Tool to help decide for generic vs specific

• But more about building yourself or not

• Subdomains:

• Core domain

• Supporting subdomain

• Generic subdomain

Strategic design

Background source: GR Stocks on Unsplash

• Organizations design systems that mirror
their own communication structure

• Don’t force a solution that goes against
the organisation structure

• Be careful to go generic when teams don’t
want to work together

Conway’s law

Background source: DALL·E

Conway’s law in action

Background source: DALL·E

• Going generic may save time in the long run,
but at which price?

• Another rule of three: building reusable
components is 3x as difficult as single use

• The price you pay is coupling

• Both on code level and people/team level

(communication overhead)

The cost of a generic solution

Background source: DALL·E

What if you get it wrong?

Photo: Dave Lehl

• There are no zero cost abstractions

• Efficiency gains of a generic solution are

typically clear, but how about:

• Onboarding new people

• Readability

• Coupling

The cost of abstractions

Background source: Héctor J. Rivas on Unsplash

• Writing bad abstractions

• Writing unnecessary reusable code

• Introducing unnecessary coupling

• Maintaining bad abstractions

• Hard to see

• Hard to understand

• Hard to extend

The cost of abstractions

Background source: Héctor J. Rivas on Unsplash

When / why to go generic

• ”We’ve always done it like this”

• “We don’t want to depend on libraries”

• “We need to be future proof”

• Because the product owner wants it

• Because the architect wants it

Bad reasons to go generic

• Rule of three checks out

• You’re pretty sure you’re going to need it

almost everywhere

• A library that lots of teams will use

• Complex logic or skills that only a couple of

people have

• Gains are bigger than cost

Valid reasons to go generic

• Think back about the layers in hierarchical
decomposition of a system

• Code vs component vs service

• Are the considerations for generic vs specific the

same on every level?

• Risk when getting it wrong is higher when the level

is higher

• Don’t confuse generification with standardization!

Generic vs specific in different scopes

Background source: Fernando Gomez on Unsplash

Why specific is often faster

Code golf

Advent of code

Generic solutions on organization level

• Sharing code efficiently at scale is hard

• Sharing code at scale means:

• Multiple modules that share code

• Multiple team members

• High rate of change

• Little to no loss of individual productivity

Sharing code within an organization

Source: https://medium.com/@jeffwhelpley/the-problem-with-shared-code-124a20fc3d3b

• Challenges:

• Refactoring

• Versioning

• Reviewing

• Builds and codebase size - monorepo?

Sharing code within an organization

Source: https://medium.com/@jeffwhelpley/the-problem-with-shared-code-124a20fc3d3b

• Monorepo: 1 large repository for a group of
projects (possible all projects)

• Good: easy to make changes across projects

• Bad: dependencies & build times

Monorepositories

Background source: DALL·E

• Discovery: what code / libraries exist?

• Distribution: binary or source dependency?

• Import: well defined API’s or chaos?

• Versioning, upgrades and lifecycle

management

• Who maintains it?

• Possible approach: inner source culture

Considerations on sharing code in an org

Source: https://medium.com/@jeffwhelpley/the-problem-with-shared-code-124a20fc3d3b, background source: Klara Kulikova on Unsplash

Summary

• Consider:

• YAGNI / Rule of three

• Cost of generic

• Scope / level

• Conway’s law

• Organization

Generic or specific?

Generic or specific?
It depends.

Write. simple. code.

Source: https://images.unsplash.com/photo-1515611926865-4fcb1c2ce28d?ixlib=rb-4.0.3&dl=kelly-sikkema-kxtB2TFBF2g-unsplash.jpg&q=80&fm=jpg&crop=entropy&cs=tinysrgb

Source: https://cdn2.vox-cdn.com/thumbor/J9OqPYS7FgI9fjGhnF7AFh8foVY=/148x0:1768x1080/1280x854/cdn0.vox-cdn.com/uploads/chorus_image/image/46147742/cute-success-kid-1920x1080.0.0.jpg

THAT’S IT.

NOW GO KICK SOME ASS!

Questions?

@bjschrijver

Thanks for your time.
Got feedback? Tweet it!

All pictures belong

to their respective

authors

@bjschrijver

