Generic or specific?
Making sensible software design decisions

Bert Jan Schrijver

Y @bjschrijver

Bert Jan Schrijver

@ OPENVALLUE
.nl.
® jug

Y @bjschrijver

What's next?

o The cost of generic

Definitions

® When & why to go
generic

Flexibility in software @
—0 Sharing code in

an organlzatlon

Levels of o

generic vs specific ,
Conclusmn

Tools to help decide @

Y @bjschrijver

What Is software design?

Specific solution (or design)

» Tailor made for use in a single place

» Tailored to a specific problem or scenario

* May not be easily adaptable to other
situations

Generic solution (or design)

» More flexible and reusable solution

» Solution can be applied to a wide range of
problems or scenarios

* Generified solution that can be used in
more than 1 place

Hierarchical decomposition

» Breaking a system or problem into
smaller parts that are easier to
understand

» Example: Google search

Hierarchical decomposition

The C4 model for visualising
software architecture

cdmodel.com

Level 1 Level 2 Level 3 Level 4
Context Containers Components Code

Coupling

» Kind and degree of interdependence
between building blocks of software

* Measure of how closely connected two
components are

» Usually contrasted with cohesion
(low coupling -> high cohesion)

Types of coupling

* Inheritance

* Messages or events

» Temporal

* Data types

* Data

» Code / API (binary or source)

Be careful with coupling!

_
C
O
AELD)
=
C

“Future proof” design

» Should we be prepared for future
changes?

» Design should be structured to
accommodate change

* Risk management: risk of wrong decision

“Highly specific code Is often preferable
to sophisticated configuration”
- Stefan Tilkov

When are we going to talk
about generic vs specific?

d source: https://7216-presscdn-0-76-pagely.netdna-ssl.com/wp-content/uploads/2011/12/confused-man-single-good-men.jpg

Generic vs specific: levels

» Code / class level

» Library level

» Data level

e (Micro)service level
* Organisation level

‘Generie.

1
3

SR
e

-~

Tools to help decide

» Do we really need this now? (YAGNI)
» Time/effort for generic vs specific

» Myth of “first time right”

» Complexity and scope

* Future needs and evolution

* The rule of three

The rule of three

» When reusing code, copy it once, and only
abstract the third time
» Avoid writing the wrong abstraction
* |t's easier to make a good abstraction from
duplicated code than to refactor the wrong
abstraction
*» "Three strikes and you refactor"

The rule of three

» First case: Just build it, don't genericise at all.
Solve the problem in front of you (YAGNI)
» Second case: Duplicate the original, redesign and

extract common behaviour while you change
* Third case: examine the lessons from the first two

passes, design a generic solution that will make it
easy to add your third case

Design heuristics

» Pass 1. YAGNI / rule of three: as simple and specific as
nossible
» Pass 2: based on solution domain knowledge:
IS a generic solution less work?
» Pass 3: based on problem domain knowledge:
s the easiest solution actually correct?
 Pass 4: looking at customer behaviour or other non
technical considerations, does this change your decision?

Strategic design

» Concept from Domain Driven Design
* Tool to help'decide for generic vs specific
» But more about building yourself or not
» Subdomains:
» Core domain
» Supporting subdomain

» Generic subdomain
O sedrndoue GRSk on Unlas

Conway’s law

» Organizations design systems that mirror
their own communication structure

» Don't force a solution that goes against
the organisation structure

* Be careful to go generic when teams don't
want to work together

-

4 ™
-) / y % \\ b

The cost of a generic solution

» Going generic may save time in the long run,
but at which price?
» Another rule of three: building reusable
components is 3x as difficult as single use
» The price you pay is coupling
» Both on code level and people/team level
(communication overhead)

What If you get It wrong?

hhhhhhhhhhhhhhh

The cost of abstractions

» There are no zero cost abstractions
» Efficiency gains of a generic solution are
typically clear, but how about:
» Onboarding new people
» Readability
» Coupling

The cost of abstractions

» Writing bad abstractions
» Writing unnecessary reusable code
* Introducing unnecessary coupling
» Maintaining bad abstractions
» Hard to see
» Hard to understand

» Hard to extend
O ceoroundsouer et Riason Unplos

Bad reasons to go generic

» "We've always done it like this”

 “We don’t want to depend on libraries”
* “We need to be future proot”

» Because the product owner wants it

» Because the architect wants it

Valid reasons to go generic

* Rule of three checks out

* You're pretty sure you're going to need it
almost everywhere

» A library that lots of teams will use

» Complex logic or skills that only a couple of
people have

» Gains are bigger than cost

Generic vs specific in different scopes

» Think back about the layers in hierarchical
decomposition of a system

» Code vs component vs service

» Are the considerations for generic vs specific the
same on every level?

 Risk when getting it wrong is higher when the level

IS higher

» Don't confuse generification with standardization!

Why specific Is often faster

be

R

: \"{‘ g %

gy Lo

Advent of code

Advent of Code [About] [Events] [Shop] [Settings] [Log Out] Bert Jan Schrijver 20x%

2022 [Calendar] AoC++] [Sponsors Leaderboard [Stats]

--- Day 5: Supply Stacks ---

The expedition can depart as soon as the final supplies have been unloaded

from the ships. Supplies are stored in stacks of marked crates, but because
the needed supplies are buried under many other crates, the crates need to

be rearranged.

The ship has a giant cargo crane capable of moving crates between stacks.
To ensure none of the crates get crushed or fall over, the crane operator
will rearrange them in a series of carefully-planned steps. After the
crates are rearranged, the desired crates will be at the top of each stack.

The Elves don't want to interrupt the crane operator during this delicate
procedure, but they forgot to ask her which crate will end up where, and
they want to be ready to unload them as soon as possible so they can
embark.

They do, however, have a drawing of the starting stacks of crates and the
rearrangement procedure (your puzzle +input). For example:

[D]
[N] [C]
[z] [M] [P]
1 2 3

move 1 from 2 to
move 3 from 1 to
move 2 from 2 to
move 1 from 1 to

N W

Q]
[G]
[P]
[R]
(L]
(C]
[T]
[F]

move
move
move
move
move
move
move
move
move
move
move
move

[J]

[s] [Q]

[F]1 [M]

[R] [P] [F]
(W]l [w] [D]
[H] [H] [T]
[Q] [B] [S]
[N] [F] [V]
2 3 4

1 from 8 to
1 from 6 to
3 from 7 to
3 from 2 to

11 from 9 to 3

1 from 6 to

15 from 3 to 9

5 from 2 to
3 from 7 to
6 from 9 to
6 from 1 to
2 from 3 to

[Z]
[F]
[V]
(W]
(D]
[L]
[Q]
5

1
1
4
9

9

SNoyw o w

[S]
[L]
[C]
[Z]
6

[F]
(D]
[v]

[H]
[P]
[S]
[L]
[G]

(M] [B] [B]
(B] [J] I[N]
(z] [T] [Q]

7

8

9

Scanner scanner = new Scanner(input);
List<String> lines = new ArrayList<>();
List<String> instructions = new ArrayList<>();

// determine initial matrix width/height dimensions
int maxLinelLength = @, initialMatrixHeight = 0;
while (scanner.hasNextLine()) {
String line = scanner.nextLine();
lines.add(line);
if (line.contains("[")) { initialMatrixHeight++; }
if (line.endsWith("]") && line.length() > maxLineLength) { maxLinelLength = line.length(); }

}
int initialMatrixWidth = (maxLineLength + 1) / 4;
Matrix matrix = new Matrix(initialMatrixWidth, initialMatrixHeight);

// init matrix and instruction
inty = 0;
for (String line: lines) {
if (line.contains("[")) { // matrix line
yi+;

for (int x=1; x<initialMatrixWidth+1l; x++) {
matrix.put(x, v: initialMatrixHeight-y+1, line.charAt(4*x(x-1)+1));

}

} else if (line.startsWith("move")) { instructions.add(line); }

ArrayList<String>
ArrayList<String>
ArrayList<String>
ArraylList<String>
ArrayList<String>
ArraylList<String>
ArrayList<String>
ArrayList<String>
ArrayList<String>

stackl
stack2
stack3
stack4
stack5
stacké
stack7
stack8
stack9

new
new
new
new
new
new
new
new
new

ArraylList<>(Arrays.
ArrayList<>(Arrays.
ArrayList<>(Arrays.
ArrayList<>(Arrays.
ArrayList<>(Arrays.
ArrayList<>(Arrays.
ArrayList<>(Arrays.
ArrayList<>(Arrays.
ArrayList<>(Arrays.

asList("F",
asList("R",
asList("C",
asList("F",
asList("L",
asList("Q",
asList("F",
asList("D",
asList("P",

"p","B", "z","T", "J","R","N"));
"s", "N, "J","H"));

"R","N", "J","6", "Z","F", "Q"));
"y*, "N, "6", "R", "T", "Q"));
T, "Q", "F"));

"c","w", "z","B", "R","G", "N"));
"c","L", "S","N", "H","M"));
"N", *Q*, *M","T", "3"));

6", "S");

Generic solutions on organization level

Sharing code within an organization

» Sharing code efficiently at scale is hard
» Sharing code at scale means:
» Multiple modules that share code
» Multiple team members
» High rate of change
» Little to no loss of individual productivity

Sharing code within an organization

» Challenges:
 Refactoring
» Versioning
* Reviewing
» Builds and codebase size - monorepo?

Monorepositories

» Monorepo: 1 large repository for a group of

projects (possible all projects)
» GOO0d: easy to make changes across projects

» Bad: dependencies & build times

Considerations on sharing code in an org

» Discovery: what code / libraries exist?

» Distribution: binary or source dependency?

» Import: well defined API's or chaos?

» Versioning, upgrades and lifecycle
management

» Who maintains it?

» Possible approach: inner source culture
L o bsi/medumcon/@jefunelly/the problem-with shre <ode-124620f3dst, bockgroundsource loraKulkovs on Unsplash

Generic or specific?

» Consider:
* YAGNI / Rule of three
» Cost of generic
* Scope / level
» Conway's law
» Organization

Generic or specific?
't depends.

S i i A ————— T ——————

INATSIN

”U“ﬁ” KICK'SOMERSS!

e Y
ol 5 e -
A

5 . . - : v k S N4
, d. g - v & k s .]
8.y o & o, P 2 AT A ¢ e a
J < # 4 Sy L' ¥ - v
AR, : ‘\‘_lﬁz" % el .,_L..Wn “.ﬂi ¥l 1 v
- ' A , o TR e L4 ..
o rm.iln ’ -

v il i
L¥ Sy X oy gir 2 r N ™
P : > —~~ B D : .
. e p IR TR ’

e B s . D ‘
_-‘-:f:\"b‘}_j o e

P

