
The Architecture of
Wemlin Hub
Ognen Ivanovski, Netcetera
Jug.ch ‘15

Wemlin

Data

Data

Planning Software

Planning Software

AVCS

AVCS

Wemlin Hub

g
Wemlin Hub

Plan Data

transport schedule (plan) over certain time

package in nature

Formats: HAFAS, GTFS, VDV 453 REF, VDV 454 REF, REST

RT Streams

updates on planned data

stream in nature

Formats: GTFS RT, VDV-453, VDV-454, REST

Getting Data

different protocols & implementations

remote system availability issues

Figuring things out

different sources, no referential guarantees

every data source is different

data quality issues

Example: station refeferences

Example: trip references

Data Enrichment

line colors

location

station metadata (e.g. which lines stop
there, which stations are near by)

Serve many users

Key Concerns
RT

low latency

throughput

available

excllent failure management

Batch

throughput

Key Concerns

processing programs the same for both batch and RT data

Key Concerns

fast reaction to load changes

Architecture

Constraints

decisions hard to change

Microkernel Architectural Style

tap

filter

transform

aggregate

sink

tap

sink

filter public interface Filter {

 boolean accept(Object obj);

}

stateless

transform public interface Transformer {

 Object transform(Object original);

}

stateless

aggregate public interface Aggregator {

 Optional<?> aggregate(Object obj);

}

Composition
pipeElement = PipelineBuilder.from(gtfsInputJunction())
 .transform(new StoppingPlaceResolver())
 .filter(new InvalidStopsFilter())
 .transform(new UnresolvedLineVehicleTypeAdder())
 .transform(new UnresolvedLineNameAdjuster())
 .transform(new LineResolver())
 .transform(
 new LineColorsEnricher(...))
 .aggregate(new CacheAggregator(cache()))
 .to(nullSink());

Model

immutable: model objects are values (changing means a new object)

algebraic: each object identity is defined by it's contents.

pure: in the sense of no external dependencies

Schedule

Trip

Stop

Station

Line

Projection

Stopping
Place

Architecture
Model

Pure Java

Immutable

Algebraic

Inverse References

Pipeline

Functional Microkernel

Filter (stateless, pure function)

Transformer (stateless, pure
function)

Aggregator (stateful, function)

Sink (consumer) / Tap (producer)

pipeElement = PipelineBuilder.from(gtfsInputJunction())
 .transform(new StoppingPlaceResolver())
 .filter(new InvalidStopsFilter())
 .transform(new UnresolvedLineVehicleTypeAdder())
 .transform(new UnresolvedLineNameAdjuster())
 .transform(new LineResolver())
 .transform(
 new LineColorsEnricher(...))
 .aggregate(new CacheAggregator(cache()))
 .to(nullSink());

pipeline “compile” assembly

Assemblies

Spring Integration based

Thread-pool based

Fork-join based

Segments

parallel / serial

separated by queues

segmentation based on the used
interfaces

Fork-Join

to be effective, one must batch

batching introduces latency (in RT)

trick

batch mode

RT mode

Memoization at construction time

Problem: immutable objects —> lots of created objects

@DesignatedFactoryMethod

AspectJ runtime weaver

hornetbackends frontend

Scaling

Storage

In-memory custom store

replacable

just an Aggregator

makes blue-green deployments a beeze

Wins
Constraint

immutable model

algebraic model

Inverse references

controlled state

 (functional) microkernel style

Gain

execution stragety freedom

parallelism

scalability

memoization at constructor time

cacheability

composability

Wins
Constraint

immutable model

algebraic model

Inverse references

controlled state

 (functional) microkernel style

Gain

execution stragety freedom

parallelism

scalability

memoization at constructor time

cacheability

composability

Wins
Constraint

immutable model

algebraic model

Inverse references

controlled state

 (functional) microkernel style

Gain

execution stragety freedom

parallelism

scalability

memoization at constructor time

cacheability

composability

Wins
Constraint

immutable model

algebraic model

Inverse references

controlled state

 (functional) microkernel style

Gain

execution stragety freedom

parallelism

scalability

memoization at constructor time

cacheability

composability

Wins
Constraint

immutable model

algebraic model

Inverse references

controlled state

 (functional) microkernel style

Gain

execution stragety freedom

parallelism

scalability

memoization at constructor time

cacheability

composability

Wins
Constraint

immutable model

algebraic model

Inverse references

controlled state

 (functional) microkernel style

Gain

execution stragety freedom

parallelism

scalability

memoization at constructor time

cacheability

composability

Architecture is Important

It’s the set of constraints you choose for your system

It how those constraints work in concert

It happens on a smaller scale than you usually think

Acknowledgments
Clojure  
(especially Rich Hickey’s talk on values, state and identity)

Lamina 
https://github.com/ztellman/lamina

Apache Storm 
https://storm.incubator.apache.org

Casading 
http://www.cascading.org

Akka  
http://akka.io

http://www.apple.com
https://github.com/ztellman/lamina
https://storm.incubator.apache.org
http://www.cascading.org
http://akka.io

Thank You

ognen.ivanovski@netcetera.com

@ognenivanovski ?

mailto:ognen.ivanovski@netcetera.com?subject=

